ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Astrometry of the Procyon System

106   0   0.0 ( 0 )
 نشر من قبل Howard E. Bond
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon As age is ~2.7 Gyr. Procyon Bs location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitors mass was 1.9-2.2 Msun, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ~5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (~0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.



قيم البحث

اقرأ أيضاً

65 - Howard E. Bond 2017
Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1 V star Sirius A, brightest star in the sky, orbited in a 50.13-year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained o ver nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years, and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063+/-0.023 Msun and 1.018+/-0.011 Msun for Sirius A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of ~15-25 Mjup. The location of Sirius B in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of ~126 Myr. The position of Sirius B in the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228+/-10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly sub-solar metallicity, of about 0.85 Zsun, to fit its location in the luminosity-radius plane. The age of Sirius A based on these models is about 237-247 Myr, with uncertainties of +/-15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this, and the orbital eccentricity remains high.
We present absolute parallaxes and proper motions for seven members of the Hyades open cluster, pre-selected to lie in the core of the cluster. Our data come from archival astrometric data from FGS 3, and newer data for 3 Hyads from FGS 1R, both whit e-light interferometers on the Hubble Space Telescope (HST). We obtain member parallaxes from six individual Fine Guidance Sensor (FGS) fields and use the field containing van Altena 622 and van Altena 627 (= HIP 21138) as an example. Proper motions, spectral classifications and VJHK photometry of the stars comprising the astrometric refer- ence frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each Hyad. The parallax of vA 627 is significantly improved by including a perturbation orbit for this previously known spectroscopic binary, now an astrometric binary. Compared to our original (1997) determina- tions, a combination of new data, updated calibration, and improved analysis lowered the individual parallax errors by an average factor of 4.5. Comparing parallaxes of the four stars contained in the Hipparcos catalog, we obtain an average factor of 11 times improvement with the HST . With these new results, we also have better agreement with Hipparcos for the four stars in common. These new parallaxes provide an average distance for these seven members, < D > = 47.5 pc, for the core a pm 1 - {sigma} dispersion depth of 3.6 pc, and a minimum depth from individual components of 16.0 pm 0.9 pc. Absolute magnitudes for each member are compared to established main sequences, with excellent agreement. We obtain a weighted average distance modulus for the core of the Hyades of m-M=3.376 pm 0.01, a value close to the previous Hipparcos values, m-M=3.33pm 0.02.
348 - L. R. Bedin , D. Apai (3 2017
Located at ~2pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman16AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity , and planet-hosting frequency. In the first study of this series -- based on a multi-cycle Hubble Space Telescope (HST) program -- we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5+/-0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.
Over the last 20 years Hubble Space Telescope Fine Guidance Sensor interferometric astrometry has produced precise and accurate parallaxes of astrophysical interesting stars and mass estimates for stellar companions. We review parallax results, and b inary star and exoplanet mass determinations, and compare a subset of these parallaxes with preliminary Gaia results. The approach to single-field relative astrometry described herein may continue to have value for targets fainter than the Gaia limit in the coming era of 20-30m telescopes.
(Abridged) Hubble Space Telescope (HST) Fine Guidance Sensor astrometric observations of the G4 IV star HD 38529 are combined with the results of the analysis of extensive ground-based radial velocity data to determine the mass of the outermost of tw o previously known companions. Our new radial velocities obtained with the Hobby-Eberly Telescope and velocities from the Carnegie-California group now span over eleven years. With these data we obtain improved RV orbital elements for both the inner companion, HD 38529 b and the outer companion, HD 38529 c. We identify a rotational period of HD 38529 (P_{rot}=31.65 +/- 0.17 d) with FGS photometry. We model the combined astrometric and RV measurements to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size due to HD 38529 c. For HD 38529 c we find P = 2136.1 +/- 0.3 d, perturbation semi-major axis alpha =1.05 +/-0.06$ mas, and inclination $i$ = 48.3 deg +/- 4 deg. Assuming a primary mass M_* = 1.48 M_{sun}, we obtain a companion mass M_c = 17.6 ^{+1.5}_{-1.2} M_{Jup}, 3-sigma above a 13 M_{Jup} deuterium burning, brown dwarf lower limit. Dynamical simulations incorporating this accurate mass for HD 38529 c indicate that a near-Saturn mass planet could exist between the two known companions. We find weak evidence of an additional low amplitude signal that can be modeled as a planetary-mass (~0.17 M$_{Jup}) companion at P~194 days. Additional observations (radial velocities and/or Gaia astrometry) are required to validate an interpretation of HD 38529 d as a planetary-mass companion. If confirmed, the resulting HD 38529 planetary system may be an example of a Packed Planetary System.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا