ﻻ يوجد ملخص باللغة العربية
We propose methods for synthesizing multilayer optical lattices of cold atoms in a layer-by-layer manner, to unlock the potential of optical lattices in simulating the fascinating physics of multilayer systems. Central to the approach is to compress the beam profile of a red-detuned Gaussian laser beam from disklike to a thin line by a telescope with two cylindrical lenses. A highly tunable multilayer optical lattice is obtained by passing the compressed Gaussian beam through an optical device consisting of beam splitters, mirrors, and glass plates. We illustrate the proposal with the displaced dice lattice, which is a trilayer lattice that maps to the dice lattice when projected to the same layer. Both the dice model and its interesting variants may be realized. For a model of fermionic cold atoms, featuring an isolated flat band between two dispersive bands, we find valley-contrasting interband transitions involving the flat band.
We consider ultracold atoms in a two-dimensional optical lattice of the dice geometry in a tight-binding regime. The atoms experience a laser-assisted tunneling between the nearest neighbour sites of the dice lattice accompanied by the momentum recoi
Optical lattices have emerged as ideal simulators for Hubbard models of strongly correlated materials, such as the high-temperature superconducting cuprates. In optical lattice experiments, microscopic parameters such as the interaction strength betw
Originally, the Hubbard model has been derived for describing the behaviour of strongly-correlated electrons in solids. However, since over a decade now, variations of it are also routinely being implemented with ultracold atoms in optical lattices.
Quantised sound waves -- phonons -- govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (e.g., by binding electrons into superconducting Cooper pai
Recent realisation of three-dimensional optical lattice clocks circumvents short range collisional clock shifts which have been the bottle neck towards higher precision; the long range electronic dipole-dipole interaction between the atoms becomes th