ترغب بنشر مسار تعليمي؟ اضغط هنا

General analytic theory of classical collinear three wave mixing in a monolithic cavity

57   0   0.0 ( 0 )
 نشر من قبل Matteo Santandrea
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrated, monolithic nonlinear cavities are of high interest in both classical and quantum optics experiments for their high efficiency and stability. However, a general, analytic theory of classical three wave mixing in such systems that encompasses multiple monolithic designs, including both linear and nonlinear regions, as well as any three-wave mixing process has not yet been fully developed. In this paper, we present the analytic theory for a general, classical three wave mixing process in a cavity with arbitrary finesse and non-zero propagation losses, encompassing second harmonic, sum frequency and difference frequency generation - SHG, SFG and DFG respectively. The analytic expression is derived under the sole assumption of low single-pass conversion efficiency (or equivalently operating in the non-depleted pump regime). We demonstrate remarkable agreement between the presented model and the experimentally obtained highly complex second-harmonic spectrum of a titanium-diffused lithium niobate waveguide cavity that includes both a linear and nonlinear section. We then show the effect that reversing the linear and nonlinear regions has on the output spectrum, highlighting the importance of system design. Finally, we demonstrate that the model can be extended to include the effect of phase modulation applied to the cavity.

قيم البحث

اقرأ أيضاً

For some crystalline materials, a regime can be found where continuous ductile cutting is feasible. Using precision diamond turning, such materials can be cut into complex optical components with high surface quality and form accuracy. In this work w e use diamond-turning to machine a monolithic, square-shaped, doubly-resonant $LiNbO_3$ cavity with two flat and two convex facets. When additional mild polishing is implemented, the Q-factor of the resonator is found to be limited only by the material absorption loss. We show how our monolithic square resonator may be operated as an optical parametric oscillator that is evanescently coupled to free-space beams via birefringent prisms. The prism arrangement allows for independent and large tuning of the fundamental and second harmonic coupling rates. We measure $2.6pm0.5$ dB of vacuum squeezing at 1064 nm using our system. Potential improvements to obtain higher degrees of squeezing are discussed.
Cylindrical vector (CV) beams are a set of transverse spatial modes that exhibit a cylindrically symmetric intensity profile and a variable polarization about the beam axis. They are composed of a non-separable superposition of orbital and spin angul ar momentum. Critically, CV beams are also the eigenmodes of optical fiber and, as such, are of wide-spread practical importance in photonics and have the potential to increase communications bandwidth through spatial multiplexing. Here, we derive the coupled amplitude equations that describe the four-wave mixing (FWM) of CV beams in optical fibers. These equations allow us to determine the selection rules that govern the interconversion of CV modes in FWM processes. With these selection rules, we show that FWM conserves the total angular momentum, the sum of orbital and spin angular momentum, in the conversion of two input photons to two output photons. When applied to spontaneous four-wave mixing, the selection rules show that photon pairs can be generated in CV modes directly and can be entangled in those modes. Such quantum states of light in CV modes could benefit technologies such as quantum key distribution with satellites.
141 - Miaodi Guo 2021
We analyze a scheme for controlling coherent photon absorption by cavity electromagnetically induced transparency (EIT) in a three-level atom-cavity system. Coherent perfect absorption (CPA) can occur when time-reversed symmetry of lasing process is obtained and destructive interference happens at the cavity interfaces. Generally, the frequency range of CPA is dependent on the decay rates of cavity mirrors. When the control laser is settled, the smaller cavity decay rate causes the wider frequency range of CPA, and the input intensity is larger to satisfy CPA condition for a given frequency. While the cavity parameters are determined, Rabi frequency of the control laser has little effect on the frequency range of CPA. However, with EIT-type quantum interference, the CPA mode is tunable by the control laser. This means the CPA with given frequency and intensity of an input laser can be manipulated as the coherent non-perfect absorption (CNPA). Moreover, with the relative phase of input probe lasers, the probe fields can be perfectly transmitted and/or reflected. Therefore, the system can be used as a controllable coherent perfect absorber or transmitter and/or reflector, and our work may have practical applications in optical logic devices.
We implement a simple and powerful approach to characterize the domain distribution in the bulk of quadratic ferroelectric crystals via far-field second-harmonic spectroscopy. The approach is demonstrated in a lithium tantalate sample with periodic e lectric field poling and random mark-to-space ratio.
In a nonlinear three-wave mixing process, the interacting waves can accumulate an adiabatic geometric phase (AGP) if the nonlinear coefficient of the crystal is modulated in a proper manner along the nonlinear crystal. This concept was studied so far only for the case in which the pump wave is much stronger than the two other waves, hence can be assumed to be constant. Here we extend this analysis for the fully nonlinear process, in which all three waves can be depleted and we show that the sign and magnitude of the AGP can be controlled by the period, phase and duty cycle of the nonlinear modulation pattern. In this fully nonlinear interaction, all the states of the system can be mapped onto a closed surface. Specifically, we study a process in which the eigenstate of the system follows a circular rotation on the surface. Our analysis reveals that the AGP equals to the difference between the total phase accumulated along the circular trajectory and that along its vertical projection, which is universal for the undepleted (linear) and depleted (nonlinear) cases. Moreover, the analysis reveals that the AGPs in the processes of sum-frequency generation and difference-frequency generation have opposite chirality. Finally, we utilize the AGP in the fully nonlinear case for splitting the beam into different diffraction orders in the far field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا