ﻻ يوجد ملخص باللغة العربية
For an infinite penny graph, we study the finite-dimensional property for the space of harmonic functions, or ancient solutions of the heat equation, of polynomial growth. We prove the asymptotically sharp dimensional estimate for the above spaces.
We consider harmonic functions of polynomial growth of some order $d$ on Cayley graphs of groups of polynomial volume growth of order $D$ w.r.t. the word metric and prove the optimal estimate for the dimension of the space of such harmonic functions.
In the present paper, we develop geometric analytic techniques on Cayley graphs of finitely generated abelian groups to study the polynomial growth harmonic functions. We develop a geometric analytic proof of the classical Heilbronn theorem and the r
Suppose $(M,g)$ is a Riemannian manifold having dimension $n$, nonnegative Ricci curvature, maximal volume growth and unique tangent cone at infinity. In this case, the tangent cone at infinity $C(X)$ is an Euclidean cone over the cross-section $X$.
We prove an analogue of Yaus Caccioppoli-type inequality for nonnegative subharmonic functions on graphs. We then obtain a Liouville theorem for harmonic or non-negative subharmonic functions of class Lq, 1<=q<infty, on any graph, and a quantitative
For a harmonic function u on Euclidean space, this note shows that its gradient is essentially determined by the geometry of its level hypersurfaces. Specifically, the factor by which |grad(u)| changes along a gradient flow is completely determined b