ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Gradient of Harmonic Functions

69   0   0.0 ( 0 )
 نشر من قبل Pisheng Ding
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Pisheng Ding




اسأل ChatGPT حول البحث

For a harmonic function u on Euclidean space, this note shows that its gradient is essentially determined by the geometry of its level hypersurfaces. Specifically, the factor by which |grad(u)| changes along a gradient flow is completely determined by the mean curvature of the level hypersurfaces intersecting the flow.



قيم البحث

اقرأ أيضاً

176 - Guozhen Lu , Qiaohua Yang 2019
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev -Mazya inequality in the upper half space of dimension $n$ coincides with the best $frac{n-1}{2}$-th order Sobolev constant when $n$ is odd and $ngeq9$ (See Theorem 1.6). We will also establish a lower bound of the coefficient of the Hardy term for the $k-$th order Hardy-Sobolev-Mazya inequality in upper half space in the remaining cases of dimension $n$ and $k$-th order derivatives (see Theorem 1.7). Precise expressions and optimal bounds for Greens functions of the operator $ -Delta_{mathbb{H}}-frac{(n-1)^{2}}{4}$ on the hyperbolic space $mathbb{B}^n$ and operators of the product form are given, where $frac{(n-1)^{2}}{4}$ is the spectral gap for the Laplacian $-Delta_{mathbb{H}}$ on $mathbb{B}^n$. Finally, we give the precise expression and optimal pointwise bound of Greens function of the Paneitz and GJMS operators on hyperbolic space, which are of their independent interest (see Theorem 1.10).
We prove that the energy dissipation property of gradient flows extends to the semigroup maximal operators in various settings. In particular, we show that the vertical maximal function relative to the $p$-parabolic extension does not increase the $d ot{W}^{1,p}$ norm of $dot{W}^{1,p}(mathbb{R}^n) cap L^{2}(mathbb{R}^n)$ functions when $p > 2$. We also obtain analogous results in the setting of uniformly parabolic and elliptic equations with bounded, measurable, real and symmetric coefficients, where the solutions do not have a representation formula via a convolution.
Though Adams and Hardy-Adams inequalities can be extended to general symmetric spaces of noncompact type fairly straightforwardly by following closely the systematic approach developed in our early works on real and complex hyperbolic spaces, higher order Poincare-Sobolev and Hardy-Sobolev-Mazya inequalities are more difficult to establish. The main purpose of this goal is to establish the Poincare-Sobolev and Hardy-Sobolev-Mazya inequalities on quaternionic hyperbolic spaces and the Cayley hyperbolic plane. A crucial part of our work is to establish appropriate factorization theorems on these spaces which are of their independent interests. To this end, we need to identify and introduce the ``Quaternionic Gellers operators and ``Octonionic Gellers operators which have been absent on these spaces. Combining the factorization theorems and the Geller type operators with the Helgason-Fourier analysis on symmetric spaces, the precise heat and Bessel-Green-Riesz kernel estimates and the Kunze-Stein phenomenon for connected real simple groups of real rank one with finite center, we succeed to establish the higher order Poincare-Sobolev and Hardy-Sobolev-Mazya inequalities on quaternionic hyperbolic spaces and the Cayley hyperbolic plane. The kernel estimates required to prove these inequalities are also sufficient for us to establish, as a byproduct, the Adams and Hardy-Adams inequalities on these spaces. This paper, together with our earlier works, completes our study of the factorization theorems, higher order Poincare-Sobolev, Hardy-Sobolev-Mazya, Adams and Hardy-Adams inequalities on all rank one symmetric spaces of noncompact type.
86 - Zunwu He , Bobo Hua 2020
For an infinite penny graph, we study the finite-dimensional property for the space of harmonic functions, or ancient solutions of the heat equation, of polynomial growth. We prove the asymptotically sharp dimensional estimate for the above spaces.
With respect to generalized trigonometric functions, since the discovery of double-angle formula for a special case by Edmunds, Gurka and Lang in 2012, no double-angle formulas have been found. In this paper, we will establish new double-angle formul as of generalized trigonometric functions in two special cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا