ﻻ يوجد ملخص باللغة العربية
Resistive Random Access Memory (RRAM) is an emerging device for processing-in-memory (PIM) architecture to accelerate convolutional neural network (CNN). However, due to the highly coupled crossbar structure in the RRAM array, it is difficult to exploit the sparsity of the network in RRAM-based CNN accelerator. To optimize the weight mapping of sparse network in the RRAM array and achieve high area and energy efficiency, we propose a novel weight mapping scheme and corresponding RRAM-based CNN accelerator architecture based on pattern pruning and Operation Unit(OU) mechanism. Experimental results show that our work can achieve 4.16x-5.20x crossbar area efficiency, 1.98x-2.15x energy efficiency, and 1.15x-1.35x performance speedup in comparison with the traditional weight mapping method.
Skeleton-based Graph Convolutional Networks (GCNs) models for action recognition have achieved excellent prediction accuracy in the field. However, limited by large model and computation complexity, GCNs for action recognition like 2s-AGCN have insuf
Object detection is widely used on embedded devices. With the wide availability of CNN (Convolutional Neural Networks) accelerator chips, the object detection applications are expected to run with low power consumption, and high inference speed. In a
Weight pruning methods of DNNs have been demonstrated to achieve a good model pruning rate without loss of accuracy, thereby alleviating the significant computation/storage requirements of large-scale DNNs. Structured weight pruning methods have been
Neural networks are an increasingly attractive algorithm for natural language processing and pattern recognition. Deep networks with >50M parameters are made possible by modern GPU clusters operating at <50 pJ per op and more recently, production acc
Channel pruning has demonstrated its effectiveness in compressing ConvNets. In many related arts, the importance of an output feature map is only determined by its associated filter. However, these methods ignore a small part of weights in the next l