ﻻ يوجد ملخص باللغة العربية
Kostochka and Thomason independently showed that any graph with average degree $Omega(rsqrt{log r})$ contains a $K_r$ minor. In particular, any graph with chromatic number $Omega(rsqrt{log r})$ contains a $K_r$ minor, a partial result towards Hadwigers famous conjecture. In this paper, we investigate analogues of these results in the directed setting. There are several ways to define a minor in a digraph. One natural way is as follows. A strong $overrightarrow{K}_r$ minor is a digraph whose vertex set is partitioned into $r$ parts such that each part induces a strongly-connected subdigraph, and there is at least one edge in each direction between any two distinct parts. We investigate bounds on the dichromatic number and minimum out-degree of a digraph that force the existence of strong $overrightarrow{K}_r$ minors as subdigraphs. In particular, we show that any tournament with dichromatic number at least $2r$ contains a strong $overrightarrow{K}_r$ minor, and any tournament with minimum out-degree $Omega(rsqrt{log r})$ also contains a strong $overrightarrow{K}_r$ minor. The latter result is tight up to the implied constant, and may be viewed as a strong-minor analogue to the classical result of Kostochka and Thomason. Lastly, we show that there is no function $f: mathbb{N} rightarrow mathbb{N}$ such that any digraph with minimum out-degree at least $f(r)$ contains a strong $overrightarrow{K}_r$ minor, but such a function exists when considering dichromatic number.
In 2009, Krivelevich and Sudakov studied the existence of large complete minors in $(t,alpha)$-expanding graphs whenever the expansion factor $t$ becomes super-constant. In this paper, we give an extension of the results of Krivelevich and Sudakov by
A digraph is {em $d$-dominating} if every set of at most $d$ vertices has a common out-neighbor. For all integers $dgeq 2$, let $f(d)$ be the smallest integer such that the vertices of every 2-edge-colored (finite or infinite) complete digraph (inclu
We show that for pairs $(Q,R)$ and $(S,T)$ of disjoint subsets of vertices of a graph $G$, if $G$ is sufficiently large, then there exists a vertex $v$ in $V(G)-(Qcup Rcup Scup T)$ such that there are two ways to reduce $G$ by a vertex-minor operatio
We prove a conjecture of Fox, Huang, and Lee that characterizes directed graphs that have constant density in all tournaments: they are disjoint unions of trees that are each constructed in a certain recursive way.
A clique minor in a graph G can be thought of as a set of connected subgraphs in G that are pairwise disjoint and pairwise adjacent. The Hadwiger number h(G) is the maximum cardinality of a clique minor in G. This paper studies clique minors in the C