ﻻ يوجد ملخص باللغة العربية
In this paper, we address self-supervised representation learning from human skeletons for action recognition. Previous methods, which usually learn feature presentations from a single reconstruction task, may come across the overfitting problem, and the features are not generalizable for action recognition. Instead, we propose to integrate multiple tasks to learn more general representations in a self-supervised manner. To realize this goal, we integrate motion prediction, jigsaw puzzle recognition, and contrastive learning to learn skeleton features from different aspects. Skeleton dynamics can be modeled through motion prediction by predicting the future sequence. And temporal patterns, which are critical for action recognition, are learned through solving jigsaw puzzles. We further regularize the feature space by contrastive learning. Besides, we explore different training strategies to utilize the knowledge from self-supervised tasks for action recognition. We evaluate our multi-task self-supervised learning approach with action classifiers trained under different configurations, including unsupervised, semi-supervised and fully-supervised settings. Our experiments on the NW-UCLA, NTU RGB+D, and PKUMMD datasets show remarkable performance for action recognition, demonstrating the superiority of our method in learning more discriminative and general features. Our project website is available at https://langlandslin.github.io/projects/MSL/.
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model. More attention is paid to employing GCN in Skeleton-Based action recognition. But existing methods based on GCNs have
The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for
Human skeleton, as a compact representation of human action, has received increasing attention in recent years. Many skeleton-based action recognition methods adopt graph convolutional networks (GCN) to extract features on top of human skeletons. Des
Action recognition with skeleton data has recently attracted much attention in computer vision. Previous studies are mostly based on fixed skeleton graphs, only capturing local physical dependencies among joints, which may miss implicit joint correla
Skeleton-based human action recognition has attracted much attention with the prevalence of accessible depth sensors. Recently, graph convolutional networks (GCNs) have been widely used for this task due to their powerful capability to model graph da