ﻻ يوجد ملخص باللغة العربية
The transverse momentum distributions measured in $p-p$ collisions at the LHC determine the kinetic freeze-out stage of the collision. The parameters deduced from these distributions differ from those determined at chemical freeze-out. The present investigation focuses on the chemical potentials at kinetic freeze-out, these are not necessarily zero as they are at chemical freeze-out, the only constraint is that they should be equal for particles and antiparticles at LHC energies. The thermodynamic variables are determined in the framework of the Tsallis distribution. The chemical potentials in the Tsallis distribution analysis of $p-p$ collisions at four different LHC energies have correctly been taken into account. This leads to a much more satisfactory analysis of the various parameters and confirms the usefulness of the Tsallis distribution in high-energy collisions. In particular we find that the temperature $T$ and the volume $V$ at each beam energy are the same for all particle types considered (pions, kaons and protons). The chemical potentials for these particles are however very different. Hence we conclude that there is evidence for thermal equilibrium at kinetic freeze-out, albeit in the sense of the Tsallis distribution and there is no evidence for chemical equilibrium at the final stage of the collision.
Numerous papers have appeared recently showing fits to transverse momentum ($p_T$) spectra measured at the Large Hadron Collider (LHC) in proton - proton collisions.This talk focuses on the fits extending to very large values of the transverse moment
A detailed analysis is presented of the precise values of the Tsallis parameters obtained in $p-p$ collisions for identified particles, pions, kaons and protons at the LHC at three beam energies $sqrt{s} = 0.9, 2.76$ and $7$ TeV. Interpolated data at
The thermodynamic parameters like energy density, pressure, entropy density, temperature and particle density are determined from the transverse momentum distributions of charged particles in Pb-Pb collisions at the LHC. The results show a clear incr
In recent years the Tsallis statistics is gaining popularity in describing charged particle produc- tion and their properties, in particular pT spectra and the multiplicities in high energy particle collisions. Motivated by its success, an analysis o
Fits to the transverse momentum distributions of charged particles produced in p - p collisions at LHC energies based on the Tsallis distribution have been shown to work over 14 orders of magnitude. T