ترغب بنشر مسار تعليمي؟ اضغط هنا

On the precise determination of the Tsallis parameters in proton - proton collisions at LHC energies

144   0   0.0 ( 0 )
 نشر من قبل Jean Cleymans
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A detailed analysis is presented of the precise values of the Tsallis parameters obtained in $p-p$ collisions for identified particles, pions, kaons and protons at the LHC at three beam energies $sqrt{s} = 0.9, 2.76$ and $7$ TeV. Interpolated data at $sqrt{s} = $ 5.02 TeV have also been included. It is shown that the Tsallis formula provides reasonably good fits to the $p_T$ distributions in $p-p$ collisions at the LHC using three parameters $dN/dy$, $T$ and $q$. However, the parameters $T$ and $q$ depend on the particle species and are different for pions, kaons and protons. As a consequence there is no $m_T$ scaling and also no universality of the parameters for different particle species.



قيم البحث

اقرأ أيضاً

Recently, the CMS Collaboration has published identified particle transverse momentum spectra in high multiplicity events at LHC energies $sqrt s $ = 0.9-13 TeV. In the present work the transverse momentum spectra have been analyzed in the framework of the color fields inside the clusters of overlapping strings, which are produced in high energy hadronic collisions. The non-Abelian nature is reflected in the coherence sum of the color fields which as a consequence gives rise to an enhancement of the transverse momentum and a suppression of the multiplicities relative to the non overlapping strings. The initial temperature and shear viscosity to entropy density ratio $eta/s$ are obtained. For the higher multiplicity events at $sqrt s $ =7 and 13 TeV the initial temperature is above the universal hadronization temperature and is consistent with the creation of de-confined matter. In these small systems it can be argued that the thermalization is a consequence of the quantum tunneling through the event horizon introduced by the confining color fields, in analogy to the Hawking-Unruh effect. The small shear viscosity to entropy density ratio $eta/s$ near the critical temperature suggests that the matter is a strongly coupled Quark Gluon Plasma.
62 - Robert Vertesi 2020
We study the multiplicity distributions of events with hard jets in proton-proton collisions at LHC energies using PYTHIA 8 Monte-Carlo simulations. We demonstrate that the charged-hadron multiplicity distributions scale with jet momentum. This sugge sts that the Koba--Nielsen--Olesen (KNO) scaling holds within a jet. The in-jet scaling is fulfilled without multiple-parton interactions (MPI), but breaks down in case MPI is present without color reconnection. Our findings imply that KNO scaling is violated by parton shower or multiple-parton interactions in higher-energy collisions.
The transverse momentum distributions measured in $p-p$ collisions at the LHC determine the kinetic freeze-out stage of the collision. The parameters deduced from these distributions differ from those determined at chemical freeze-out. The present in vestigation focuses on the chemical potentials at kinetic freeze-out, these are not necessarily zero as they are at chemical freeze-out, the only constraint is that they should be equal for particles and antiparticles at LHC energies. The thermodynamic variables are determined in the framework of the Tsallis distribution. The chemical potentials in the Tsallis distribution analysis of $p-p$ collisions at four different LHC energies have correctly been taken into account. This leads to a much more satisfactory analysis of the various parameters and confirms the usefulness of the Tsallis distribution in high-energy collisions. In particular we find that the temperature $T$ and the volume $V$ at each beam energy are the same for all particle types considered (pions, kaons and protons). The chemical potentials for these particles are however very different. Hence we conclude that there is evidence for thermal equilibrium at kinetic freeze-out, albeit in the sense of the Tsallis distribution and there is no evidence for chemical equilibrium at the final stage of the collision.
A model for exclusive diffractive resonance production in proton-proton collisions at LHC energies is presented. This model is based on the convolution of the Donnachie-Landshoff parameterisation of Pomeron flux in the proton with the Pomeron cross s ection for resonance production. The hadronic cross section for f$_{0}$(980) and f$_{2}$(1270) production at midrapidity is given differentially in mass and transverse momentum of the resonance. The proton fractional longitudinal momentum loss is presented.
The freezeout conditions in proton-proton collisions at $sqrt{s_{textrm{NN}}}= 200$, $900$ and $7000$ GeV have been extracted by fits to the mean hadron yields at mid-rapidity within the framework of the statistical model of an ideal gas of hadrons a nd resonances in the grand canonical ensemble. The variation of the extracted freezeout thermal parameters and the goodness of the fits with $sqrt{s_{textrm{NN}}}$ are discussed. We find the extracted temperature and baryon chemical potential of the freezeout surface to be similar in p+p and heavy ion collisions. On the other hand, the thermal behaviour of the strange hadrons is qualitatively different in p+p as compared to A+A. We find an additional parameter accounting for non-equilibrium strangeness production is essential for describing the p+p data. This is in contrast to A+A where the non-equilibrium framework could be successfully replaced by a sequential and complete equilibrium model with an early freezeout of the strange hadrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا