ﻻ يوجد ملخص باللغة العربية
We present results of our study of the long-period eclipsing binary star NN Delphini (hereafter NN Del). The results are based on spectral data obtained with the HRS echelle spectrograph of the Southern African Large Telescope (SALT). Our constructed velocity curve is based on 19 spectra obtained between 2017 and 2019 years and covers all phases of the binarys orbit. The orbital period, P=99.252 days, was determined from our spectral data and coincides with the period determined in previous studies, as well as the system eccentricity of $e=0.517$. Calculated velocity amplitudes of both components allow us to determine the masses of both system components M_1 = 1.320 M_sun and M_2 = 1.433 M_sun with the accuracy about of one percent (0.8% and 1.1%), respectively. Luminosities of both components are presented as L_1 = 4.164 L_sun and L_2 = 6.221 L_sun, and the effective temperatures of both components were directly evaluated (T_eff = 6545~K and T_eff = 6190~K) together with the metallicity of the system [Fe/H] = -0.19 dex and its color excess E(B-V)=0.026~mag. Comparison with evolutionary tracks shows that the system age is 2.25+/-0.19 Gyr, and both components are on the main sequence and have not yet passed the turn point. Spectral type is F5V for the hotter component and F8V for another one.
The mass-luminosity relation is a fundamental law of astrophysics. We have suggested that the currently used mass-luminosity relation is not correct for the M/M_sun > 2.7 range of mass since it was created using double-lined eclipsing binaries, where
The two objects 1SWASP J150822.80-054236.9 and 1SWASP J160156.04+202821.6 were initially detected from their SuperWASP archived light curves as candidate eclipsing binaries with periods close to the short-period cut-off of the orbital period distribu
We present the results of a spectroscopic campaign on eclipsing binaries with long orbital period (P = 20 - 75 d) carried out with the CHIRON spectrograph. Physical and orbital solutions for seven systems were derived from the V-band, and I-band ASAS
The photometric and spectroscopic data for three double-lined detached eclipsing binaries were collected from the photometric and spectral surveys. The light and radial velocity curves of each binary system were simultaneously analyzed by using Wilso
High precision CCD observations of six totally eclipsing contact binaries were presented and analyzed. It is found that only one target is an A-type contact binary (V429 Cam), while the others are W-type contact ones. By analyzing the times of light