ﻻ يوجد ملخص باللغة العربية
Functions with low $c$-differential uniformity were proposed in $2020$ and attracted lots of attention, especially the P$c$N and AP$c$N functions, due to their applications in cryptography. The objective of this paper is to study P$c$N and AP$c$N functions. As a consequence, we propose a class of P$c$N functions and four classes of AP$c$N functions by using the cyclotomic technique and the switch method. In addition, four classes of P$c$N or AP$c$N functions are presented by virtue of (generalized) AGW criterion.
In this paper, we present three new classes of $q$-ary quantum MDS codes utilizing generalized Reed-Solomon codes satisfying Hermitian self-orthogonal property. Among our constructions, the minimum distance of some $q$-ary quantum MDS codes can be bi
Let $mathbb{F}_{p^{n}}$ be the finite field with $p^n$ elements and $operatorname{Tr}(cdot)$ be the trace function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, where $p$ is a prime and $n$ is an integer. Inspired by the works of Mesnager (IEEE Trans.
In this work we establish some new interleavers based on permutation functions. The inverses of these interleavers are known over a finite field $mathbb{F}_q$. For the first time M{o}bius and Redei functions are used to give new deterministic interle
In this paper, we show that LCD codes are not equivalent to linear codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD$(n,2)$ over $mathbb{F}_3$ and $mathbb{F}_4$. We study the bound of LCD codes over $mathbb{F}_q$.
In this paper, we investigate the power functions $F(x)=x^d$ over the finite field $mathbb{F}_{2^{4n}}$, where $n$ is a positive integer and $d=2^{3n}+2^{2n}+2^{n}-1$. It is proved that $F(x)=x^d$ is APcN at certain $c$s in $mathbb{F}_{2^{4n}}$, and