ﻻ يوجد ملخص باللغة العربية
Approximation of interacting kernels by sum of Gaussians (SOG) is frequently required in many applications of scientific and engineering computing in order to construct efficient algorithms for kernel summation or convolution problems. In this paper, we propose a kernel-independent SOG method by introducing the de la Vallee-Poussin sum and Chebyshev polynomials. The SOG works for general interacting kernels and the lower bound of Gaussian bandwidths is tunable and thus the Gaussians can be easily summed by fast Gaussian algorithms. The number of Gaussians can be further reduced via the model reduction based on the balanced truncation based on the square root method. Numerical results on the accuracy and model reduction efficiency show attractive performance of the proposed method.
We propose an accurate algorithm for a novel sum-of-exponentials (SOE) approximation of kernel functions, and develop a fast algorithm for convolution quadrature based on the SOE, which allows an order $N$ calculation for $N$ time steps of approximat
There are plenty of applications and analysis for time-independent elliptic partial differential equations in the literature hinting at the benefits of overtesting by using more collocation conditions than the number of basis functions. Overtesting n
We develop a new type of orthogonal polynomial, the modified discrete Laguerre (MDL) polynomials, designed to accelerate the computation of bosonic Matsubara sums in statistical physics. The MDL polynomials lead to a rapidly convergent Gaussian quadr
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob
The moment-of-fluid (MOF) method is an extension of the volume-of-fluid method with piecewise linear interface construction (VOF-PLIC). By minimizing the least square error of the centroid of the cutting polyhedron, the MOF method reconstructs the li