ترغب بنشر مسار تعليمي؟ اضغط هنا

fairseq S2T: Fast Speech-to-Text Modeling with fairseq

353   0   0.0 ( 0 )
 نشر من قبل Changhan Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce fairseq S2T, a fairseq extension for speech-to-text (S2T) modeling tasks such as end-to-end speech recognition and speech-to-text translation. It follows fairseqs careful design for scalability and extensibility. We provide end-to-end workflows from data pre-processing, model training to offline (online) inference. We implement state-of-the-art RNN-based as well as Transformer-based models and open-source detailed training recipes. Fairseqs machine translation models and language models can be seamlessly integrated into S2T workflows for multi-task learning or transfer learning. Fairseq S2T documentation and examples are available at https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text.



قيم البحث

اقرأ أيضاً

This paper presents fairseq S^2, a fairseq extension for speech synthesis. We implement a number of autoregressive (AR) and non-AR text-to-speech models, and their multi-speaker variants. To enable training speech synthesis models with less curated d ata, a number of preprocessing tools are built and their importance is shown empirically. To facilitate faster iteration of development and analysis, a suite of automatic metrics is included. Apart from the features added specifically for this extension, fairseq S^2 also benefits from the scalability offered by fairseq and can be easily integrated with other state-of-the-art systems provided in this framework. The code, documentation, and pre-trained models are available at https://github.com/pytorch/fairseq/tree/master/examples/speech_synthesis.
Speech-to-text translation (ST), which directly translates the source language speech to the target language text, has attracted intensive attention recently. However, the combination of speech recognition and machine translation in a single model po ses a heavy burden on the direct cross-modal cross-lingual mapping. To reduce the learning difficulty, we propose COnSecutive Transcription and Translation (COSTT), an integral approach for speech-to-text translation. The key idea is to generate source transcript and target translation text with a single decoder. It benefits the model training so that additional large parallel text corpus can be fully exploited to enhance the speech translation training. Our method is verified on three mainstream datasets, including Augmented LibriSpeech English-French dataset, TED English-German dataset, and TED English-Chinese dataset. Experiments show that our proposed COSTT outperforms the previous state-of-the-art methods. The code is available at https://github.com/dqqcasia/st.
61 - Yi Ren , Yangjun Ruan , Xu Tan 2019
Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrog ram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech.
An end-to-end speech-to-text translation (ST) takes audio in a source language and outputs the text in a target language. Existing methods are limited by the amount of parallel corpus. Can we build a system to fully utilize signals in a parallel ST c orpus? We are inspired by human understanding system which is composed of auditory perception and cognitive processing. In this paper, we propose Listen-Understand-Translate, (LUT), a unified framework with triple supervision signals to decouple the end-to-end speech-to-text translation task. LUT is able to guide the acoustic encoder to extract as much information from the auditory input. In addition, LUT utilizes a pre-trained BERT model to enforce the upper encoder to produce as much semantic information as possible, without extra data. We perform experiments on a diverse set of speech translation benchmarks, including Librispeech English-French, IWSLT English-German and TED English-Chinese. Our results demonstrate LUT achieves the state-of-the-art performance, outperforming previous methods. The code is available at https://github.com/dqqcasia/st.
Text-to-speech (TTS) acoustic models map linguistic features into an acoustic representation out of which an audible waveform is generated. The latest and most natural TTS systems build a direct mapping between linguistic and waveform domains, like S ampleRNN. This way, possible signal naturalness losses are avoided as intermediate acoustic representations are discarded. Another important dimension of study apart from naturalness is their adaptability to generate voice from new speakers that were unseen during training. In this paper we first propose the use of problem-agnostic speech embeddings in a multi-speaker acoustic model for TTS based on SampleRNN. This way we feed the acoustic model with speaker acoustically dependent representations that enrich the waveform generation more than discrete embeddings unrelated to these factors. Our first results suggest that the proposed embeddings lead to better quality voices than those obtained with discrete embeddings. Furthermore, as we can use any speech segment as an encoded representation during inference, the model is capable to generalize to new speaker identities without retraining the network. We finally show that, with a small increase of speech duration in the embedding extractor, we dramatically reduce the spectral distortion to close the gap towards the target identities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا