ترغب بنشر مسار تعليمي؟ اضغط هنا

Training Binary Neural Networks through Learning with Noisy Supervision

113   0   0.0 ( 0 )
 نشر من قبل Kai Han
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper formalizes the binarization operations over neural networks from a learning perspective. In contrast to classical hand crafted rules (eg hard thresholding) to binarize full-precision neurons, we propose to learn a mapping from full-precision neurons to the target binary ones. Each individual weight entry will not be binarized independently. Instead, they are taken as a whole to accomplish the binarization, just as they work together in generating convolution features. To help the training of the binarization mapping, the full-precision neurons after taking sign operations is regarded as some auxiliary supervision signal, which is noisy but still has valuable guidance. An unbiased estimator is therefore introduced to mitigate the influence of the supervision noise. Experimental results on benchmark datasets indicate that the proposed binarization technique attains consistent improvements over baselines.

قيم البحث

اقرأ أيضاً

As tons of photos are being uploaded to public websites (e.g., Flickr, Bing, and Google) every day, learning from web data has become an increasingly popular research direction because of freely available web resources, which is also referred to as w ebly supervised learning. Nevertheless, the performance gap between webly supervised learning and traditional supervised learning is still very large, owning to the label noise of web data. To be exact, the labels of images crawled from public websites are very noisy and often inaccurate. Some existing works tend to facilitate learning from web data with the aid of extra information, such as augmenting or purifying web data by virtue of instance-level supervision, which is usually in demand of heavy manual annotation. Instead, we propose to tackle the label noise by leveraging more accessible category-level supervision. In particular, we build our method upon variational autoencoder (VAE), in which the classification network is attached on the hidden layer of VAE in a way that the classification network and VAE can jointly leverage the category-level hybrid semantic information. The effectiveness of our proposed method is clearly demonstrated by extensive experiments on three benchmark datasets.
Convolutional neural networks trained without supervision come close to matching performance with supervised pre-training, but sometimes at the cost of an even higher number of parameters. Extracting subnetworks from these large unsupervised convnets with preserved performance is of particular interest to make them less computationally intensive. Typical pruning methods operate during training on a task while trying to maintain the performance of the pruned network on the same task. However, in self-supervised feature learning, the training objective is agnostic on the representation transferability to downstream tasks. Thus, preserving performance for this objective does not ensure that the pruned subnetwork remains effective for solving downstream tasks. In this work, we investigate the use of standard pruning methods, developed primarily for supervised learning, for networks trained without labels (i.e. on self-supervised tasks). We show that pruned masks obtained with or without labels reach comparable performance when re-trained on labels, suggesting that pruning operates similarly for self-supervised and supervised learning. Interestingly, we also find that pruning preserves the transfer performance of self-supervised subnetwork representations.
Artificial Neural Network (ANN)-based inference on battery-powered devices can be made more energy-efficient by restricting the synaptic weights to be binary, hence eliminating the need to perform multiplications. An alternative, emerging, approach r elies on the use of Spiking Neural Networks (SNNs), biologically inspired, dynamic, event-driven models that enhance energy efficiency via the use of binary, sparse, activations. In this paper, an SNN model is introduced that combines the benefits of temporally sparse binary activations and of binary weights. Two learning rules are derived, the first based on the combination of straight-through and surrogate gradient techniques, and the second based on a Bayesian paradigm. Experiments validate the performance loss with respect to full-precision implementations, and demonstrate the advantage of the Bayesian paradigm in terms of accuracy and calibration.
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa ch for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
We propose a novel regularization algorithm to train deep neural networks, in which data at training time is severely biased. Since a neural network efficiently learns data distribution, a network is likely to learn the bias information to categorize input data. It leads to poor performance at test time, if the bias is, in fact, irrelevant to the categorization. In this paper, we formulate a regularization loss based on mutual information between feature embedding and bias. Based on the idea of minimizing this mutual information, we propose an iterative algorithm to unlearn the bias information. We employ an additional network to predict the bias distribution and train the network adversarially against the feature embedding network. At the end of learning, the bias prediction network is not able to predict the bias not because it is poorly trained, but because the feature embedding network successfully unlearns the bias information. We also demonstrate quantitative and qualitative experimental results which show that our algorithm effectively removes the bias information from feature embedding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا