ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Automated Protocol Disambiguation and Code Generation

88   0   0.0 ( 0 )
 نشر من قبل Yu-Chuan (Jane) Yen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For decades, Internet protocols have been specified using natural language. Given the ambiguity inherent in such text, it is not surprising that protocol implementations have long exhibited bugs. In this paper, we apply natural language processing (NLP) to effect semi-automated generation of protocol implementations from specification text. Our system, SAGE, can uncover ambiguous or under-specified sentences in specifications; once these are clarified by the spec author, SAGE can generate protocol code automatically. Using SAGE, we discover 5 instances of ambiguity and 6 instances of under-specification in the ICMP RFC; after clarification, SAGE is able to automatically generate code that interoperates perfectly with Linux implementations. We show that SAGE generalizes to BFD, IGMP, and NTP. We also find that SAGE supports many of the conceptual components found in key protocols, suggesting that, with some additional machinery, SAGE may be able to generalize to TCP and BGP.



قيم البحث

اقرأ أيضاً

Connected and Automated Vehicles (CAVs) utilize a variety of onboard sensors to sense their surrounding environment. CAVs can improve their perception capabilities if vehicles exchange information about what they sense using V2X communications. This is known as cooperative or collective perception (or sensing). A frequent transmission of collective perception messages could improve the perception capabilities of CAVs. However, this improvement can be compromised if vehicles generate too many messages and saturate the communications channel. An important aspect is then when vehicles should generate the perception messages. ETSI has proposed the first set of message generation rules for collective perception. These rules define when vehicles should generate collective perception messages and what should be their content. We show that the current rules generate a high number of collective perception messages with information about a small number of detected objects. This results in an inefficient use of the communication channel that reduces the effectiveness of collective perception. We address this challenge and propose an improved algorithm that modifies the generation of collective perception messages. We demonstrate that the proposed solution improves the reliability of V2X communication and the perception of CAVs.
Testing is the most direct and effective technique to ensure software quality. However, it is a burden for developers to understand the poorly-commented tests, which are common in industry environment projects. Mobile applications (app) are GUI-inten sive and event-driven, so test scripts focusing on GUI interactions play a more important role in mobile app testing besides the test cases for the source code. Therefore, more attention should be paid to the user interactions and the corresponding user event responses. However, test scripts are loosely linked to apps under test (AUT) based on widget selectors, making it hard to map the operations to the functionality code of AUT. In such a situation, code understanding algorithms may lose efficacy if directly applied to mobile app test scripts. We present a novel approach, TestIntent, to infer the intent of mobile app test scripts. TestIntent combines the GUI image understanding and code understanding technologies. The test script is transferred into an operation sequence model. For each operation, TestIntent extracts the operated widget selector and link the selector to the UI layout structure, which stores the detailed information of the widgets, including coordinates, type, etc. With code understanding technologies, TestIntent can locate response methods in the source code. Afterwards, NLP algorithms are adopted to understand the code and generate descriptions. Also, TestIntent can locate widgets on the app GUI images. Then, TestIntent can understand the widget intent with an encoder-decoder model. With the combination of the results from GUI and code understanding, TestIntent generates the test intents in natural language format. We also conduct an empirical experiment, and the results prove the outstanding performance of TestIntent. A user study also declares that TestIntent can save developers time to understand test scripts.
This document describes the core concepts of the CCNx architecture and presents a minimum network protocol based on two messages: Interests and Content Objects. It specifies the set of mandatory and optional fields within those messages and describes their behavior and interpretation. This architecture and protocol specification is independent of a specific wire encoding.
P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set h as grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how OpenFlow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed. (2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packet-processing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label.
Many datacenter applications such as machine learning and streaming systems do not need the complete set of data to perform their computation. Current approximate applications in datacenters run on a reliable network layer like TCP. To improve perfor mance, they either let sender select a subset of data and transmit them to the receiver or transmit all the data and let receiver drop some of them. These approaches are network oblivious and unnecessarily transmit more data, affecting both application runtime and network bandwidth usage. On the other hand, running approximate application on a lossy network with UDP cannot guarantee the accuracy of application computation. We propose to run approximate applications on a lossy network and to allow packet loss in a controlled manner. Specifically, we designed a new network protocol called Approximate Transmission Protocol, or ATP, for datacenter approximate applications. ATP opportunistically exploits available network bandwidth as much as possible, while performing a loss-based rate control algorithm to avoid bandwidth waste and re-transmission. It also ensures bandwidth fair sharing across flows and improves accurate applications performance by leaving more switch buffer space to accurate flows. We evaluated ATP with both simulation and real implementation using two macro-benchmarks and two real applications, Apache Kafka and Flink. Our evaluation results show that ATP reduces application runtime by 13.9% to 74.6% compared to a TCP-based solution that drops packets at sender, and it improves accuracy by up to 94.0% compared to UDP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا