ترغب بنشر مسار تعليمي؟ اضغط هنا

Content-Centric Networking - Architectural Overview and Protocol Description

146   0   0.0 ( 0 )
 نشر من قبل Christopher Wood
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This document describes the core concepts of the CCNx architecture and presents a minimum network protocol based on two messages: Interests and Content Objects. It specifies the set of mandatory and optional fields within those messages and describes their behavior and interpretation. This architecture and protocol specification is independent of a specific wire encoding.

قيم البحث

اقرأ أيضاً

Content replication to many destinations is a common use case in the Internet of Things (IoT). The deployment of IP multicast has proven inefficient, though, due to its lack of layer-2 support by common IoT radio technologies and its synchronous end- to-end transmission, which is highly susceptible to interference. Information-centric networking (ICN) introduced hop-wise multi-party dissemination of cacheable content, which has proven valuable in particular for low-power lossy networking regimes. Even NDN, however, the most prominent ICN protocol, suffers from a lack of deployment. In this paper, we explore how multiparty content distribution in an information-centric Web of Things (WoT) can be built on CoAP. We augment the CoAP proxy by request aggregation and response replication functions, which together with proxy caches enable asynchronous group communication. In a further step, we integrate content object security with OSCORE into the CoAP multicast proxy system, which enables ubiquitous caching of certified authentic content. In our evaluation, we compare NDN with different deployment models of CoAP, including our data-centric approach in realistic testbed experiments. Our findings indicate that multiparty content distribution based on CoAP proxies performs equally well as NDN, while remaining fully compatible with the established IoT protocol world of CoAP on the Internet.
Information-Centric Networking (ICN) is a new networking paradigm, which replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet, mobile ad hoc networks) with an information-centric paradigm, which prioriti zes the delivery of named content, oblivious of the contents origin. Content and client security are more intrinsic in the ICN paradigm versus the current host centric paradigm where they have been instrumented as an after thought. By design, the ICN paradigm inherently supports several security and privacy features, such as provenance and identity privacy, which are still not effectively available in the host-centric paradigm. However, given its nascency, the ICN paradigm has several open security and privacy concerns, some that existed in the old paradigm, and some new and unique. In this article, we survey the existing literature in security and privacy research sub-space in ICN. More specifically, we explore three broad areas: security threats, privacy risks, and access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In the broad area of security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In the broad area of privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICNs feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. In this broad area, we review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work.
We introduce fast millimeter-wave base station (BS) and its antenna sector selection for user equipment based on its location. Using a conditional random field inference model with specially designed parameters, which are robust to change of environm ent, InferBeam allows the use of measurement samples on best beam selection at a small number of locations to infer the rest dynamically. Compared to beam-sweeping based approaches in the literature, InferBeam can drastically reduce the setup cost for beam alignment for a new environment, and also the latency in acquiring a new beam under intermittent blockage. We have evaluated InferBeam using a discrete event simulation. Our results indicate that the system can make best beam selection for 98% of locations in test environments comprising smallsized apartment or office spaces, while sampling fewer than 1% of locations. InferBeam is a complete protocol for best beam inference that can be integrated into millimeter-wave standards for accelerating the much-needed fast and economic beam alignment capability.
Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded contr ollers link these `things to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.
This paper discusses an efficient approach to design and implement a highly available peer- to-peer system irrespective of peer timing and churn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا