ﻻ يوجد ملخص باللغة العربية
Infinite order differential operators appear in different fields of Mathematics and Physics and in the last decades they turned out to be of fundamental importance in the study of the evolution of superoscillations as initial datum for Schrodinger equation. Inspired by the operators arising in quantum mechanics, in this paper we investigate the continuity of a class of infinite order differential operators acting on spaces of entire hyperholomorphic functions. The two classes of hyperholomorphic functions, that constitute a natural extension of functions ofone complex variable to functions of paravector variables are illustrated by the Fueter-Sce-Qian mapping theorem. We show that, even though the two notions of hyperholomorphic functions are quite different from each other, entire hyperholomorphic functions with exponential bounds play a crucial role in the continuity of infinite order differential operators acting on these two classes of entire hyperholomorphic functions. We point out the remarkable fact that the exponential function of a paravector variable is not in the kernel of the Dirac operator but entire monogenic functions with exponential bounds play an important role in the theory.
In this paper we develop the calculus of pseudo-differential operators corresponding to the quantizations of the form $$ Au(x)=int_{mathbb{R}^n}int_{mathbb{R}^n}e^{i(x-y)cdotxi}sigma(x+tau(y-x),xi)u(y)dydxi, $$ where $tau:mathbb{R}^ntomathbb{R}^n$ is
We shall give bounds on the spacing of zeros of certain functions belonging to the Laguerre-Polya class and satisfying a second order differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Lague
A full description of the membership in the Schatten ideal $S_ p(A^2_{omega})$ for $0<p<infty$ of the Toeplitz operator acting on large weighted Bergman spaces is obtained.
Let $J$ and $R$ be anti-commuting fundamental symmetries in a Hilbert space $mathfrak{H}$. The operators $J$ and $R$ can be interpreted as basis (generating) elements of the complex Clifford algebra ${mathcal C}l_2(J,R):={span}{I, J, R, iJR}$. An arb
We study extensions of Sobolev and BV functions on infinite-dimensional domains. Along with some positive results we present a negative solution of the long-standing problem of existence of Sobolev extensions of functions in Gaussian Sobolev spaces from a convex domain to the whole space.