ﻻ يوجد ملخص باللغة العربية
The Jovian-sized object WD~1856~b transits a white dwarf (WD) in a compact $1.4$-day orbit. Unlikely to have endured stellar evolution in its current orbit, WD~1856~b is thought to have migrated from much wider separations. Because the WD is old, and a member of a well-characterized hierarchical multiple, the well-known Kozai mechanism provides an effective migration channel for WD~1856~b. Moreover, the lack of tides in the star allows us to directly connect the current semi-major axis to the pre-migration one, from which we can infer the initial conditions of the system. By further demanding that successful migrators survive all previous phases of stellar evolution, we are able to constrain the mass of WD~1856~b to be $simeq0.7-3M_{rm J}$ and its main sequence semi-major axis to be $simeq 2-2.5$ au. These properties imply that WD~1856~b was born a typical gas giant. We further estimate the occurrence rate of Kozai-migrated planets around WDs to be ${cal O}(10^{-3}{-}10^{-4})$, suggesting that WD~1856~b is the only one in the {it TESS} sample, but implying ${cal O}(10^2)$ future detections by LSST. In a sense, WD~1856~b was an ordinary Jovian planet that underwent an extraordinary dynamical history.
White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres, even though these elements should rapidly settle into
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by th
The detection of a dust disc around G29-38 and transits from debris orbiting WD1145+017 confirmed that the photospheric trace metals found in many white dwarfs arise from the accretion of tidally disrupted planetesimals. The composition of these plan
Transition discs are expected to be a natural outcome of the interplay between photoevaporation (PE) and giant planet formation. Massive planets reduce the inflow of material from the outer to the inner disc, therefore triggering an earlier onset of
Asteroid material is detected in white dwarfs (WDs) as atmospheric pollution by metals, in the form of gas/dust discs, or in photometric transits. Within the current paradigm, minor bodies need to be scattered, most likely by planets, into highly ecc