ترغب بنشر مسار تعليمي؟ اضغط هنا

Toxic Language Detection in Social Media for Brazilian Portuguese: New Dataset and Multilingual Analysis

111   0   0.0 ( 0 )
 نشر من قبل Carolina Scarton
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hate speech and toxic comments are a common concern of social media platform users. Although these comments are, fortunately, the minority in these platforms, they are still capable of causing harm. Therefore, identifying these comments is an important task for studying and preventing the proliferation of toxicity in social media. Previous work in automatically detecting toxic comments focus mainly in English, with very few work in languages like Brazilian Portuguese. In this paper, we propose a new large-scale dataset for Brazilian Portuguese with tweets annotated as either toxic or non-toxic or in different types of toxicity. We present our dataset collection and annotation process, where we aimed to select candidates covering multiple demographic groups. State-of-the-art BERT models were able to achieve 76% macro-F1 score using monolingual data in the binary case. We also show that large-scale monolingual data is still needed to create more accurate models, despite recent advances in multilingual approaches. An error analysis and experiments with multi-label classification show the difficulty of classifying certain types of toxic comments that appear less frequently in our data and highlights the need to develop models that are aware of different categories of toxicity.



قيم البحث

اقرأ أيضاً

Stress is a nigh-universal human experience, particularly in the online world. While stress can be a motivator, too much stress is associated with many negative health outcomes, making its identification useful across a range of domains. However, exi sting computational research typically only studies stress in domains such as speech, or in short genres such as Twitter. We present Dreaddit, a new text corpus of lengthy multi-domain social media data for the identification of stress. Our dataset consists of 190K posts from five different categories of Reddit communities; we additionally label 3.5K total segments taken from 3K posts using Amazon Mechanical Turk. We present preliminary supervised learning methods for identifying stress, both neural and traditional, and analyze the complexity and diversity of the data and characteristics of each category.
This paper presents the Multilingual COVID-19 Analysis Method (CMTA) for detecting and observing the spread of misinformation about this disease within texts. CMTA proposes a data science (DS) pipeline that applies machine learning models for process ing, classifying (Dense-CNN) and analyzing (MBERT) multilingual (micro)-texts. DS pipeline data preparation tasks extract features from multilingual textual data and categorize it into specific information classes (i.e., false, partly false, misleading). The CMTA pipeline has been experimented with multilingual micro-texts (tweets), showing misinformation spread across different languages. To assess the performance of CMTA and put it in perspective, we performed a comparative analysis of CMTA with eight monolingual models used for detecting misinformation. The comparison shows that CMTA has surpassed various monolingual models and suggests that it can be used as a general method for detecting misinformation in multilingual micro-texts. CMTA experimental results show misinformation trends about COVID-19 in different languages during the first pandemic months.
Online forums and social media platforms are increasingly being used to discuss topics of varying polarities where different people take different stances. Several methodologies for automatic stance detection from text have been proposed in literatur e. To our knowledge, there has not been any systematic investigation towards their reproducibility, and their comparative performances. In this work, we explore the reproducibility of several existing stance detection models, including both neural models and classical classifier-based models. Through experiments on two datasets -- (i)~the popular SemEval microblog dataset, and (ii)~a set of health-related online news articles -- we also perform a detailed comparative analysis of various methods and explore their shortcomings. Implementations of all algorithms discussed in this paper are available at https://github.com/prajwal1210/Stance-Detection-in-Web-and-Social-Media.
Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training dataset s for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
Reply suggestion models help users process emails and chats faster. Previous work only studies English reply suggestion. Instead, we present MRS, a multilingual reply suggestion dataset with ten languages. MRS can be used to compare two families of m odels: 1) retrieval models that select the reply from a fixed set and 2) generation models that produce the reply from scratch. Therefore, MRS complements existing cross-lingual generalization benchmarks that focus on classification and sequence labeling tasks. We build a generation model and a retrieval model as baselines for MRS. The two models have different strengths in the monolingual setting, and they require different strategies to generalize across languages. MRS is publicly available at https://github.com/zhangmozhi/mrs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا