ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale Huygens metasurfaces for holographic 3D near-eye displays

120   0   0.0 ( 0 )
 نشر من قبل Arseniy Kuznetsov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Novel display technologies aim at providing the users with increasingly immersive experiences. In this regard, it is a long-sought dream to generate three-dimensional (3D) scenes with high resolution and continuous depth, which can be overlaid with the real world. Current attempts to do so, however, fail in providing either truly 3D information, or a large viewing area and angle, strongly limiting the user immersion. Here, we report a proof-of-concept solution for this problem, and realize a compact holographic 3D near-eye display with a large exit pupil of 10mm x 8.66mm. The 3D image is generated from a highly transparent Huygens metasurface hologram with large (>10^8) pixel count and subwavelength pixels, fabricated via deep-ultraviolet immersion photolithography on 300 mm glass wafers. We experimentally demonstrate high quality virtual 3D scenes with ~50k active data points and continuous depth ranging from 0.5m to 2m, overlaid with the real world and easily viewed by naked eye. To do so, we introduce a new design method for holographic near-eye displays that, inherently, is able to provide both parallax and accommodation cues, fundamentally solving the vergence-accommodation conflict that exists in current commercial 3D displays.



قيم البحث

اقرأ أيضاً

149 - Mingkai Liu , Duk-Yong Choi 2018
We introduce the concept and a generic approach to realize Extreme Huygens Metasurfaces by bridging the concepts of Huygens conditions and optical bound states in the continuum. This novel paradigm allows creating Huygens metasurfaces whose quality f actors can be tuned over orders of magnitudes, generating extremely dispersive phase modulation. We validate this concept with a proof-of-concept experiment at the near-infrared wavelengths, demonstrating all-dielectric Huygens metasurfaces with different quality factors. Our study points out a practical route for controlling the radiative decay rate while maintaining the Huygens condition, complementing existing Huygens metasurfaces whose bandwidths are relatively broad and complicated to tune. This novel feature can provide new insight for various applications, including optical sensing, dispersion engineering and pulse-shaping, tunable metasurfaces, metadevices with high spectral selectivity, and nonlinear meta-optics.
The ongoing effort to implement compact and cheap optical systems is the main driving force for the recent flourishing research in the field of optical metalenses. Metalenses are a type of metasurface, used for focusing and imaging applications, and are implemented based on the nanopatterning of an optical surface. The challenge faced by metalens research is to reach high levels of performance, using simple fabrication methods suitable for mass-production. In this paper we present a Huygens nanoantenna based metalens, designed for outdoor photographic/surveillance applications in the near-infra-red. We show that good imaging quality can be obtained over a field-of-view (FOV) as large as +/-15 degrees. This first successful implementation of metalenses for outdoor imaging applications is expected to provide insight and inspiration for future metalens imaging applications.
Metasurfaces are an enabling technology for complex wave manipulation functions, including in the terahertz frequency range, where they are expected to advance security, imaging, sensing, and communications technology. For operation in transmission, Huygens metasurfaces are commonly used, since their good impedance match to the surrounding media minimizes reflections and maximizes transmission. Recent theoretical work has shown that Huygens metasurfaces are non-optimal, particularly for large angles of refraction, and that to eliminate reflections and spurious diffracted beams it is necessary to use a bianisotropic metasurface. However, it remains to be demonstrated how significant the efficiency improvement is when using bianisotropic metasurfaces, considering all the non-ideal features that arise when implementing the metasurface design with real meta-atoms. Here we compare concrete terahertz metasurface designs based on the Huygens and Omega-type bianisotropic approaches, demonstrating anomalous refraction angles for 55 degrees, and 70 degrees. We show that for the lower angle of 55 degrees, there is no significant improvement when using the bianisotropic design, whereas for refraction at 70 degrees the bianisotropic design shows much higher efficiency and fidelity of refraction into the designed direction. We also demonstrate the strong perturbations caused by near-field interaction, both between and within cells, which we compensate using numerical optimization.
352 - Lin Wang , Yan Li , Shuxin Liu 2021
In order to overcome the accommodation and convergence (A-C) conflict that commonly causes visual fatigue in AR display, we propose a Maxwellian-viewing-super-multi-view (MV-SMV) near-eye display system based on a Pancharatnam-Berry optical element ( PBOE). The PBOE, which is constituted with an array of high-efficiency polarization gratings, is implemented to direct different views to different directions simultaneously, constructing the 3D light field. Meanwhile, each view is like a Maxwellian view display that possesses a small viewpoint and a large depth of field (DOF). Hence, the MV-SMV display can display virtual images with correct accommodation depth cue within a large DOF. We implement a proof-of-concept MV-SMV display prototype with 3 x 1 and 3 x 2 viewpoints using a 1D PBOE and a 2D PBOE, respectively, and achieve a DOF of 4.37 diopters experimentally.
Polaritons, coupled excitations of photons and dipolar matter excitations, can propagate along anisotropic metasurfaces with either hyperbolic or elliptical dispersion. At the transition from hyperbolic to elliptical dispersion (corresponding to a to pological transition), various intriguing phenomena are found, such as an enhancement of the photonic density of states, polariton canalization and hyperlensing. Here we investigate theoretically and experimentally the topological transition and the polaritonic coupling of deeply subwavelength elements in a uniaxial infrared-phononic metasurface, a grating of hexagonal boron nitride (hBN) nanoribbons. By hyperspectral infrared nanoimaging, we observe, for the first time, a synthetic transverse optical phonon resonance (that is, the strong collective near-field coupling of the nanoribbons) in the middle of the hBN Reststrahlen band, yielding a topological transition from hyperbolic to elliptical dispersion. We further visualize and characterize the spatial evolution of a deeply subwavelength canalization mode near the transition frequency, which is a collimated polariton that is the basis for hyperlensing and diffraction-less propagation. Our results provide fundamental insights into the role of polaritonic near-field coupling in metasurfaces for creating topological transitions and polariton canalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا