ترغب بنشر مسار تعليمي؟ اضغط هنا

Widget Captioning: Generating Natural Language Description for Mobile User Interface Elements

201   0   0.0 ( 0 )
 نشر من قبل Yang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural language descriptions of user interface (UI) elements such as alternative text are crucial for accessibility and language-based interaction in general. Yet, these descriptions are constantly missing in mobile UIs. We propose widget captioning, a novel task for automatically generating language descriptions for UI elements from multimodal input including both the image and the structural representations of user interfaces. We collected a large-scale dataset for widget captioning with crowdsourcing. Our dataset contains 162,859 language phrases created by human workers for annotating 61,285 UI elements across 21,750 unique UI screens. We thoroughly analyze the dataset, and train and evaluate a set of deep model configurations to investigate how each feature modality as well as the choice of learning strategies impact the quality of predicted captions. The task formulation and the dataset as well as our benchmark models contribute a solid basis for this novel multimodal captioning task that connects language and user interfaces.



قيم البحث

اقرأ أيضاً

Questions of fairness, robustness, and transparency are paramount to address before deploying NLP systems. Central to these concerns is the question of reliability: Can NLP systems reliably treat different demographics fairly and function correctly i n diverse and noisy environments? To address this, we argue for the need for reliability testing and contextualize it among existing work on improving accountability. We show how adversarial attacks can be reframed for this goal, via a framework for developing reliability tests. We argue that reliability testing -- with an emphasis on interdisciplinary collaboration -- will enable rigorous and targeted testing, and aid in the enactment and enforcement of industry standards.
194 - Lili Mou , Zhengdong Lu , Hang Li 2016
Building neural networks to query a knowledge base (a table) with natural language is an emerging research topic in deep learning. An executor for table querying typically requires multiple steps of execution because queries may have complicated stru ctures. In previous studies, researchers have developed either fully distributed executors or symbolic executors for table querying. A distributed executor can be trained in an end-to-end fashion, but is weak in terms of execution efficiency and explicit interpretability. A symbolic executor is efficient in execution, but is very difficult to train especially at initial stages. In this paper, we propose to couple distributed and symbolic execution for natural language queries, where the symbolic executor is pretrained with the distributed executors intermediate execution results in a step-by-step fashion. Experiments show that our approach significantly outperforms both distributed and symbolic executors, exhibiting high accuracy, high learning efficiency, high execution efficiency, and high interpretability.
Descriptions are often provided along with recommendations to help users discovery. Recommending automatically generated music playlists (e.g. personalised playlists) introduces the problem of generating descriptions. In this paper, we propose a meth od for generating music playlist descriptions, which is called as music captioning. In the proposed method, audio content analysis and natural language processing are adopted to utilise the information of each track.
Providing personalized explanations for recommendations can help users to understand the underlying insight of the recommendation results, which is helpful to the effectiveness, transparency, persuasiveness and trustworthiness of recommender systems. Current explainable recommendation models mostly generate textual explanations based on pre-defined sentence templates. However, the expressiveness power of template-based explanation sentences are limited to the pre-defined expressions, and manually defining the expressions require significant human efforts. Motivated by this problem, we propose to generate free-text natural language explanations for personalized recommendation. In particular, we propose a hierarchical sequence-to-sequence model (HSS) for personalized explanation generation. Different from conventional sentence generation in NLP research, a great challenge of explanation generation in e-commerce recommendation is that not all sentences in user reviews are of explanation purpose. To solve the problem, we further propose an auto-denoising mechanism based on topical item feature words for sentence generation. Experiments on various e-commerce product domains show that our approach can not only improve the recommendation accuracy, but also the explanation quality in terms of the offline measures and feature words coverage. This research is one of the initial steps to grant intelligent agents with the ability to explain itself based on natural language sentences.
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care. The ability to accurately and efficiently predict mood from easily collectible data has several important implications for the early detecti on, intervention, and treatment of mental health disorders. One promising data source to help monitor human behavior is daily smartphone usage. However, care must be taken to summarize behaviors without identifying the user through personal (e.g., personally identifiable information) or protected (e.g., race, gender) attributes. In this paper, we study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors. Using computational models, we find that language and multimodal representations of mobile typed text (spanning typed characters, words, keystroke timings, and app usage) are predictive of daily mood. However, we find that models trained to predict mood often also capture private user identities in their intermediate representations. To tackle this problem, we evaluate approaches that obfuscate user identity while remaining predictive. By combining multimodal representations with privacy-preserving learning, we are able to push forward the performance-privacy frontier.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا