ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Correlation Dynamics in Controlled Two-Coupled-Qubit Systems

179   0   0.0 ( 0 )
 نشر من قبل Iulia Ghiu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study and compare the time evolutions of concurrence and quantum discord in a driven system of two interacting qubits prepared in a generic Werner state. The~corresponding quantum dynamics is exactly treated and manifests the appearance and disappearance of entanglement. Our analytical treatment transparently unveils the physical reasons for the occurrence of such a phenomenon, relating it to the dynamical invariance of the $X$ structure of the initial state. The~quantum correlations which asymptotically emerge in the system are investigated in detail in terms of the time evolution of the fidelity of the initial Werner state.

قيم البحث

اقرأ أيضاً

Universal quantum computing relies on high-fidelity entangling operations. Here we demonstrate that four coupled qubits can operate as a quantum gate, where two qubits control the operation on two target qubits (a four-qubit gate). This configuration can implement four different controlled two-qubit gates: two different entangling swap and phase operations, a phase operation distinguishing states of different parity, and the identity operation (idle quantum gate), where the choice of gate is set by the state of the control qubits. The device exploits quantum interference to control the operation on the target qubits by coupling them to each other via the control qubits. By connecting several four-qubit devices in a two-dimensional lattice, one can achieve a highly connected quantum computer. We consider an implementation of the four-qubit gate with superconducting qubits, using capacitively coupled qubits arranged in a diamond-shaped architecture.
Integrated quantum photonics is an appealing platform for quantum information processing, quantum communication and quantum metrology. In all these applications it is necessary not only to be able to create and detect Fock states of light but also to program the photonic circuits that implements some desired logical operation. Here we demonstrate a reconfigurable controlled two-qubit operation on a chip using a multiwaveguide interferometer with a tunable phase shifter. We find excellent agreement between theory and experiment, with a 0.98 pm 0.02 average similarity between measured and ideal operations.
Based on the Pauli spin operators we develop the notion of the spin-correlation matrix for the two-qubit system. If this matrix is non-zero, the measure of the correlation between the qubits is the average of the non-zero elements. Trivially, for zer o matrix the bipartite is uncorrelated. This criterion turns out to be a necessary and sufficient condition for the full correlation, where it includes information on both entanglement and correlation other than entanglement. Moreover, we discuss to what extent this criterion can give information on the entanglement of the system. The criterion is generic in the sense that it can be applied to mixed and pure systems. Also, it can be easily extended to treat the correlation of multipartite systems. We compare the results obtained from this criterion to those from concurrence for various examples and we gain agreement regarding entanglement. We believe that this criterion may have a wide range of potential applications in quantum information theory.
Entanglement is essential in quantum information science. Typically, the inevitable coupling between quantum systems and environment inhibits entanglement from being created between long-distance subsystems and being maintained for a long time. In th is paper, we show that when the environment is composed of a bath of massive scalar fields, the region of the separation within which entanglement can be generated is significantly enlarged, and the decay rate of entanglement is significantly slowed down compared with those in the massless case, when the mass of the field $m$ is smaller than but close to the transition frequency of the qubits $omega$. When $mgeqomega$, the initial entanglement can be maintained for an arbitrarily long time, regardless of the environmental temperature. Therefore, in principle, it is possible to achieve long-distance entanglement generation and long-lived entanglement by manipulating the energy level spacing of the two-level systems with respect to the mass of the field.
We analyze and show experimental results of the conditional purity, the quantum discord and other related measures of quantum correlation in mixed two-qubit states constructed from a pair of photons in identical polarization states. The considered st ates are relevant for the description of spin pair states in interacting spin chains in a transverse magnetic field. We derive clean analytical expressions for the conditional local purity and other correlation measures obtained as a result of a remote local projective measurement, which are fully verified by the experimental results. A simple exact expression for the quantum discord of these states in terms of the maximum conditional purity is also derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا