ﻻ يوجد ملخص باللغة العربية
We analyze and show experimental results of the conditional purity, the quantum discord and other related measures of quantum correlation in mixed two-qubit states constructed from a pair of photons in identical polarization states. The considered states are relevant for the description of spin pair states in interacting spin chains in a transverse magnetic field. We derive clean analytical expressions for the conditional local purity and other correlation measures obtained as a result of a remote local projective measurement, which are fully verified by the experimental results. A simple exact expression for the quantum discord of these states in terms of the maximum conditional purity is also derived.
To explore the properties of a two-qubit mixed state, we consider quantum teleportation. The fidelity of a teleported state depends on the resource state purity and entanglement, as characterized by concurrence. Concurrence and purity are functions o
Applications of quantum technology often require fidelities to quantify performance. These provide a fundamental yardstick for the comparison of two quantum states. While this is straightforward in the case of pure states, it is much more subtle for
It is known that protocols based on weak measurements can be used to steer quantum systems into pre-designated pure states. Here we show that weak-measurement-based steering protocols can be harnessed for on-demand engineering of $textit{mixed}$ stat
We examine, in correlated mixed states of qudit-qubit systems, the set of all conditional qubit states that can be reached after local measurements at the qudit based on rank-1 projectors. While for a similar measurement at the qubit, the conditional
The ability to reach a maximally entangled state from a separable one through the use of a two-qubit unitary operator is analyzed for mixed states. This extension from the known case of pure states shows that there are at least two families of gates