ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lightest 2D Nanomaterial: Freestanding Ultrathin Li Nanosheets by in-situ Electron Microscopy

192   0   0.0 ( 0 )
 نشر من قبل Muhua Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lithium (Li) is the simplest metal and the lightest solid element. Here we report the first demonstration of controlled growth of two-dimensional (2D) ultrathin Li nanosheets with large lateral dimensions up to several hundreds of nanometres and thickness limited to just a few nanometres by in-situ transmission electron microscopy (TEM). The nanoscale dynamics of nanosheets growth were unravelled by real-time TEM imaging, which, in combination with density function theory (DFT) calculations indicates that the growth of bcc structured Li into 2D nanosheets is a consequence of kinetic control as mediated by preferential oxidization of the (111) surfaces due to the trace amount of O2 (~10-6 Pa) within TEM chamber. The plasmonic optical properties of the as-grown Li nanosheets were probed by cathodoluminescence (CL) spectroscopy equipped within TEM, and a broadband visible emission was observed that contains contributions of both in-plane and out-of-plane plasmon resonance modes.



قيم البحث

اقرأ أيضاً

120 - Pratibha Gai , Edward Boyes 2017
Advances in atomic resolution in situ environmental transmission electron microscopy for direct probing of gas-solid reactions, including at very high temperatures are described. In addition, recent developments of dynamic real time in situ studies a t the Angstrom level using a hot stage in an aberration corrected environment are presented. In situ data from Pt and Pd nanoparticles on carbon with the corresponding FFT (optical diffractogram) illustrate an achieved resolution of 0.11 nm at 500 C and higher in a double aberration corrected TEM and STEM instrument employing a wider gap objective pole piece. The new results open up opportunities for dynamic studies of materials in an aberration corrected environment.
Ferromagnetic behaviour has been observed experimentally for the first time in nanostructured Manganese. Ultrathin ($sim$ 0.6 nm) Manganese nanosheets have been synthesized inside the two dimensional channels of sol-gel derived Na-4 mica. The magneti c properties of the confined system are measured within 2K-300K temperature range. The confined structure is found to show a ferromagnetic behaviour with a nonzero coercivity value. The coercivity value remains positive throughout the entire temperature range of measurement. The experimental variation of susceptibility as a function of temperature has been satisfactorily explained on the basis of a two dimensional system with a Heisenberg Hamiltonian involving direct exchange interaction.
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution an d reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180{deg} tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
Nanopores in 2D materials are highly desirable for DNA sequencing, yet achieving single-stranded DNA (ssDNA) transport through them is challenging. Using density functional theory calculations and molecular dynamics simulations we show that ssDNA tra nsport through a pore in monolayer hexagonal boron nitride (hBN) is marked by a basic nanomechanical conflict. It arises from the notably inhomogeneous flexural rigidity of ssDNA and causes high friction $textit{via}$ transient DNA desorption costs exacerbated by solvation effects. For a similarly sized pore in bilayer hBN, its self-passivated atomically smooth edge enables continuous ssDNA transport. Our findings shed light on the fundamental physics of biopolymer transport through pores in 2D materials.
The functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn are a function of the surface man ufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial effects, respectively, in the process of surface manufacturing. The AFM images of the texture of corrosion-resistant magnetite coatings formed on low-carbon steel in hot nitrate solutions with coating growth promoters at different temperatures are analyzed. It is shown that the parameters characterizing surface spikiness are able to quantify the effect of process temperature on the corrosion resistance of the coatings. It is suggested that these parameters can be used for predicting and characterizing the corrosion-resistant properties of magnetite coatings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا