ﻻ يوجد ملخص باللغة العربية
Advances in atomic resolution in situ environmental transmission electron microscopy for direct probing of gas-solid reactions, including at very high temperatures are described. In addition, recent developments of dynamic real time in situ studies at the Angstrom level using a hot stage in an aberration corrected environment are presented. In situ data from Pt and Pd nanoparticles on carbon with the corresponding FFT (optical diffractogram) illustrate an achieved resolution of 0.11 nm at 500 C and higher in a double aberration corrected TEM and STEM instrument employing a wider gap objective pole piece. The new results open up opportunities for dynamic studies of materials in an aberration corrected environment.
For quantitative electron microscopy high precision position information is necessary so that besides an adequate resolution and sufficiently strong contrast of atoms, small width of peaks which represent atoms in structural images is needed. Size of
In this work, an optic fiber based $textit{in situ}$ illumination system integrated into an aberration-corrected environmental transmission electron microscope (ETEM) is designed, built, characterized and applied. With this illumination system, the d
Incommensurate modulated structure (IMS) in Bi2Sr1.6La0.4CuO6+{delta} (BSLCO) has been studied by aberration corrected transmission electron microscopy in combination with high-dimensional (HD) space description. Two images in the negative Cs imaging
An environmental cell high resolution electron microscope (EHREM) has been developed for in situ studies of dynamic chemical reactions on the atomic scale. It allows access to metastable intermediate phases of catalysts and to sequences of reversible
Lithium (Li) is the simplest metal and the lightest solid element. Here we report the first demonstration of controlled growth of two-dimensional (2D) ultrathin Li nanosheets with large lateral dimensions up to several hundreds of nanometres and thic