ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-based Out-of-distribution Detection

103   0   0.0 ( 0 )
 نشر من قبل Weitang Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Determining whether inputs are out-of-distribution (OOD) is an essential building block for safely deploying machine learning models in the open world. However, previous methods relying on the softmax confidence score suffer from overconfident posterior distributions for OOD data. We propose a unified framework for OOD detection that uses an energy score. We show that energy scores better distinguish in- and out-of-distribution samples than the traditional approach using the softmax scores. Unlike softmax confidence scores, energy scores are theoretically aligned with the probability density of the inputs and are less susceptible to the overconfidence issue. Within this framework, energy can be flexibly used as a scoring function for any pre-trained neural classifier as well as a trainable cost function to shape the energy surface explicitly for OOD detection. On a CIFAR-10 pre-trained WideResNet, using the energy score reduces the average FPR (at TPR 95%) by 18.03% compared to the softmax confidence score. With energy-based training, our method outperforms the state-of-the-art on common benchmarks.



قيم البحث

اقرأ أيضاً

With the recently rapid development in deep learning, deep neural networks have been widely adopted in many real-life applications. However, deep neural networks are also known to have very little control over its uncertainty for unseen examples, whi ch potentially causes very harmful and annoying consequences in practical scenarios. In this paper, we are particularly interested in designing a higher-order uncertainty metric for deep neural networks and investigate its effectiveness under the out-of-distribution detection task proposed by~cite{hendrycks2016baseline}. Our method first assumes there exists an underlying higher-order distribution $mathbb{P}(z)$, which controls label-wise categorical distribution $mathbb{P}(y)$ over classes on the K-dimension simplex, and then approximate such higher-order distribution via parameterized posterior function $p_{theta}(z|x)$ under variational inference framework, finally we use the entropy of learned posterior distribution $p_{theta}(z|x)$ as uncertainty measure to detect out-of-distribution examples. Further, we propose an auxiliary objective function to discriminate against synthesized adversarial examples to further increase the robustness of the proposed uncertainty measure. Through comprehensive experiments on various datasets, our proposed framework is demonstrated to consistently outperform competing algorithms.
342 - Yifei Ming , Hang Yin , Yixuan Li 2021
Modern neural networks can assign high confidence to inputs drawn from outside the training distribution, posing threats to models in real-world deployments. While much research attention has been placed on designing new out-of-distribution (OOD) det ection methods, the precise definition of OOD is often left in vagueness and falls short of the desired notion of OOD in reality. In this paper, we present a new formalization and model the data shifts by taking into account both the invariant and environmental (spurious) features. Under such formalization, we systematically investigate how spurious correlation in the training set impacts OOD detection. Our results suggest that the detection performance is severely worsened when the correlation between spurious features and labels is increased in the training set. We further show insights on detection methods that are more effective in reducing the impact of spurious correlation and provide theoretical analysis on why reliance on environmental features leads to high OOD detection error. Our work aims to facilitate a better understanding of OOD samples and their formalization, as well as the exploration of methods that enhance OOD detection.
Deep Neural Networks are actively being used in the design of autonomous Cyber-Physical Systems (CPSs). The advantage of these models is their ability to handle high-dimensional state-space and learn compact surrogate representations of the operation al state spaces. However, the problem is that the sampled observations used for training the model may never cover the entire state space of the physical environment, and as a result, the system will likely operate in conditions that do not belong to the training distribution. These conditions that do not belong to training distribution are referred to as Out-of-Distribution (OOD). Detecting OOD conditions at runtime is critical for the safety of CPS. In addition, it is also desirable to identify the context or the feature(s) that are the source of OOD to select an appropriate control action to mitigate the consequences that may arise because of the OOD condition. In this paper, we study this problem as a multi-labeled time series OOD detection problem over images, where the OOD is defined both sequentially across short time windows (change points) as well as across the training data distribution. A common approach to solving this problem is the use of multi-chained one-class classifiers. However, this approach is expensive for CPSs that have limited computational resources and require short inference times. Our contribution is an approach to design and train a single $beta$-Variational Autoencoder detector with a partially disentangled latent space sensitive to variations in image features. We use the feature sensitive latent variables in the latent space to detect OOD images and identify the most likely feature(s) responsible for the OOD. We demonstrate our approach using an Autonomous Vehicle in the CARLA simulator and a real-world automotive dataset called nuImages.
Uncertainties in machine learning are a significant roadblock for its application in safety-critical cyber-physical systems (CPS). One source of uncertainty arises from distribution shifts in the input data between training and test scenarios. Detect ing such distribution shifts in real-time is an emerging approach to address the challenge. The high dimensional input space in CPS applications involving imaging adds extra difficulty to the task. Generative learning models are widely adopted for the task, namely out-of-distribution (OoD) detection. To improve the state-of-the-art, we studied existing proposals from both machine learning and CPS fields. In the latter, safety monitoring in real-time for autonomous driving agents has been a focus. Exploiting the spatiotemporal correlation of motion in videos, we can robustly detect hazardous motion around autonomous driving agents. Inspired by the latest advances in the Variational Autoencoder (VAE) theory and practice, we tapped into the prior knowledge in data to further boost OoD detections robustness. Comparison studies over nuScenes and Synthia data sets show our methods significantly improve detection capabilities of OoD factors unique to driving scenarios, 42% better than state-of-the-art approaches. Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented. Finally, we customized one proposed method into a twin-encoder model that can be deployed to resource limited embedded devices for real-time OoD detection. Its execution time was reduced over four times in low-precision 8-bit integer inference, while detection capability is comparable to its corresponding floating-point model.
In satellite image analysis, distributional mismatch between the training and test data may arise due to several reasons, including unseen classes in the test data and differences in the geographic area. Deep learning based models may behave in unexp ected manner when subjected to test data that has such distributional shifts from the training data, also called out-of-distribution (OOD) examples. Predictive uncertainly analysis is an emerging research topic which has not been explored much in context of satellite image analysis. Towards this, we adopt a Dirichlet Prior Network based model to quantify distributional uncertainty of deep learning models for remote sensing. The approach seeks to maximize the representation gap between the in-domain and OOD examples for a better identification of unknown examples at test time. Experimental results on three exemplary test scenarios show the efficacy of the model in satellite image analysis.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا