ﻻ يوجد ملخص باللغة العربية
Evaluating the mechanical response of fiber-reinforced composites can be extremely time consuming and expensive. Machine learning (ML) techniques offer a means for faster predictions via models trained on existing input-output pairs and have exhibited success in composite research. This paper explores a fully convolutional neural network modified from StressNet, which was originally for lin-ear elastic materials and extended here for a non-linear finite element (FE) simulation to predict the stress field in 2D slices of segmented tomography images of a fiber-reinforced polymer specimen. The network was trained and evaluated on data generated from the FE simulations of the exact microstructure. The testing results show that the trained network accurately captures the characteristics of the stress distribution, especially on fibers, solely from the segmented microstructure images. The trained model can make predictions within seconds in a single forward pass on an ordinary laptop, given the input microstructure, compared to 92.5 hours to run the full FE simulation on a high-performance computing cluster. These results show promise in using ML techniques to conduct fast structural analysis for fiber-reinforced composites and suggest a corollary that the trained model can be used to identify the location of potential damage sites in fiber-reinforced polymers.
Biopolymer gels, such as those made out of fibrin or collagen, are widely used in tissue engineering applications and biomedical research. Moreover, fibrin naturally assembles into gels in vivo during wound healing and thrombus formation. Macroscale
This paper introduces new attention-based convolutional neural networks for selecting bands from hyperspectral images. The proposed approach re-uses convolutional activations at different depths, identifying the most informative regions of the spectr
Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical p
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing hig
A reliable sense-and-avoid system is critical to enabling safe autonomous operation of unmanned aircraft. Existing sense-and-avoid methods often require specialized sensors that are too large or power intensive for use on small unmanned vehicles. Thi