ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mellin moments $langle x rangle$ and $langle x^2 rangle$ for the pion and kaon from lattice QCD

52   0   0.0 ( 0 )
 نشر من قبل Colin Lauer
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a calculation of the pion quark momentum fraction, $langle x rangle$, and its third Mellin moment $langle x^2 rangle$. We also obtain directly, for the first time, $langle x rangle$ and $langle x^2 rangle$ for the kaon using local operators. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The quark masses are chosen so that they reproduce a pion mass of about 260 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the lattice has a spatial extent of 3 fm. We analyze several values of the source-sink time separation within the range of $1.12-2.23$ fm to study and eliminate excited-states contributions. The necessary renormalization functions are calculated non-perturbatively in the RI$$ scheme, and are converted to the $overline{rm MS}$ scheme at a scale of 2 GeV. The final values for the momentum fraction are $langle x rangle^pi_{u^+}=0.261(3)_{rm stat}(6)_{rm syst}$, $langle x rangle^K_{u^+}=0.246(2)_{rm stat}(2)_{rm syst}$, and $langle x rangle^K_{s^+}=0.317(2)_{rm stat}(1)_{rm syst}$. For the third Mellin moments we find $langle x^2 rangle^pi_{u^+}=0.082(21)_{rm stat}(17)_{rm syst}$, $langle x^2 rangle^K_{u^+}=0.093(5)_{rm stat}(3)_{rm syst}$, and $langle x^2 rangle^K_{s^+}=0.134(5)_{rm stat}(2)_{rm syst}$. The reported systematic uncertainties are due to excited-state contamination. We also give the ratio $langle x^2 rangle/langle x rangle$ which is an indication of how quickly the PDFs lose support at large $x$.



قيم البحث

اقرأ أيضاً

Using Nf=2+1+1 lattice QCD, we determine the fermionic connected contributions to the second and third moment of the pion PDF. Based on gauge configurations from the European Twisted Mass Collaboration, chiral and continuum extrapolations are perform ed using pion masses in the range of 230 to 500 MeV and three values of the lattice spacing. Finite volume effects are investigated using different volumes. In order to avoid mixing under renormalisation for the third moment, we use an operator with two non-zero spatial components of momentum. Momenta are injected using twisted boundary conditions. Our final values read $langle xrangle=0.2075(106)$ and $langle x^2rangle=0.163(33)$, determined at 2 GeV in the $overline{MS}$-scheme and with systematic and statistical uncertainties summend in quadrature.
109 - B. Eberly , L. Aliaga , O. Altinok 2014
Charged pion production via charged current $ u_{mu}$ interactions on plastic (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W $<$ 1.4 GeV are selected to isolate single pion production, which is expected to occur primarily through the $Delta(1232)$ resonance. Cross sections as functions of pion production angle and kinetic energy are reported and compared to predictions from different theoretical calculations and generator-based models, for neutrinos ranging in energy from 1.5 GeV to 10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. These measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.
73 - A. Ghosh , B. Yaeggy , R.Galindo 2021
This paper presents a novel neutral-pion reconstruction that takes advantage of the machine learning technique of semantic segmentation using MINERvA data collected between 2013-2017, with an average neutrino energy of $6$ GeV. Semantic segmentation improves the purity of neutral pion reconstruction from two gammas from 71% to 89% and improves the efficiency of the reconstruction by approximately 40%. We demonstrate our method in a charged current neutral pion production analysis where a single neutral pion is reconstructed. This technique is applicable to modern tracking calorimeters, such as the new generation of liquid-argon time projection chambers, exposed to neutrino beams with $langle E_ u rangle$ between 1-10 GeV. In such experiments it can facilitate the identification of ionization hits which are associated with electromagnetic showers, thereby enabling improved reconstruction of charged-current $ u_e$ events arising from $ u_{mu} rightarrow u_{e}$ appearance.
We find efficient spin transport in Si at room temperature in lateral spin valves (LSVs). When the crystal orientation of the spin-transport channel in LSVs is changed from $langle$110$rangle$, which is a conventional cleavage direction, to $langle$1 00$rangle$, the maximum magnitude of the spin signals is markedly enhanced. From the analyses based on the one-dimensional spin diffusion model, we can understand that the spin injection/detection efficiency in Si$langle$100$rangle$ LSVs is larger than that in Si$langle$110$rangle$ ones. We infer that, in Si-based LSVs, the spin detection efficiency of the pure spin current is related to the crystallographic orientation of the valley structures of the conduction band in Si.
159 - T. Le , J.L. Palomino , L. Aliaga 2015
Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process c onstrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $bar{ u}_e$ appearance oscillation experiments. The differential cross sections for $pi^0$ momentum and production angle, for events with a single observed $pi^0$ and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the $pi^0$ kinematics for this process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا