ﻻ يوجد ملخص باللغة العربية
After more than a century of studies on the optical properties of Bi3+ ions, the assignment of the nature of the emissions and the bands of the absorption spectra remain ambiguous. Here, we report an insight into the spectroscopy of Bi3+-activated CaMO3 perovskites (M = Zr, Sn, and Ti), discussing the factors driving the metal-to-metal charge transfer and sp -> s2 transitions. With the aim to figure out the whole scenario, a combined experimental and theoretical approach is employed. The comparison between the temperature dependence of the photoluminescence emissions with the temperature dependence of the exciton energy of the systems has led to an unprecedented evidence of the chargetransfer character of the emitting states in Bi3+-activated phosphors. Low-temperature vacuum ultraviolet spectroscopy together with the design of the vacuum-referred binding energy diagram of the luminescent center is exploited to shed light on the origin of the absorption bands. In addition, the X-ray absorption near the edge structure unambiguously confirmed the stabilization of Bi3+ in the Ca2+ site in both CaSnO3 and CaZrO3 perovskites. This breakthrough into the understanding of the excited-state origin of Bi3+ could pave the way toward the design of a new generation of effective Bi3+-activated phosphors.
The samples LaCoO3 with dilute substitutions on cobalt sites have been studied using the resistivity, thermopower and magnetic susceptibility measurements over the temperature range up to ~900 K. The Co-site substitution does not affect the magnetic
The mechanisms that drive metal-to-insulator transitions (MIT) in correlated solids are not fully understood. For example, the perovskite (PV) SrCoO3 is a FM metal while the oxygen-deficient (n-doped) brownmillerite (BM) SrCoO2.5 is an anti-ferromagn
Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to
Using density-functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB$^{2+}$X$_3$) and double perovskites (AB$^+$B$^{3+}$X$_6$) (A = Cs or monovalent organic ion, B$^{2+}$ = non-Pb d
Integrating multiple properties in a single system is crucial for the continuous developments in electronic devices. However, some physical properties are mutually exclusive in nature. Here, we report the coexistence of two seemingly mutually exclusi