ترغب بنشر مسار تعليمي؟ اضغط هنا

Parity-Forbidden Transitions and Their Impacts on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites

89   0   0.0 ( 0 )
 نشر من قبل Weiwei Meng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using density-functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB$^{2+}$X$_3$) and double perovskites (AB$^+$B$^{3+}$X$_6$) (A = Cs or monovalent organic ion, B$^{2+}$ = non-Pb divalent metal, B$^+$ = monovalent metal, B$^{3+}$ = trivalent metal, X = halogen). We show that, if B$^{2+}$ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect bandgap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct bandgaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell application. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely those with B$^+$ = In, Tl and B$^{3+}$ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.



قيم البحث

اقرأ أيضاً

The electronic structure evolution of deficient halide perovskites with a general formula $(A,A)_{1+x}M_{1-x}X_{3-x}$ was investigated using the density functional theory. The focus is placed on characterization of changes in the band gap, band align ment, effective mass, and optical properties of deficient perovskites at various concentrations of defects. We uncover unusual electronic properties of the defect corresponding to a $M!-!X$ vacancy filled with an $A$ cation. This defect repels electrons and holes producing no trap states and, in moderate quantities ($xle0.1$), does not hinder charge transport properties of the material. This behavior is rationalized using a confinement model and provides an additional insight to the defect tolerance of halide perovskites.
Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scatteri ng, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr$_3$, FAPbBr$_3$, MAPbI$_3$ and $alpha$-FAPbI$_3$ (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C$_{44}$. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr$_3$. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft $alpha$-FAPbI$_3$.
We report a strongly temperature dependent luminescence Stokes shift in the electronic spectra of both hybrid and inorganic lead-bromide perovskite single crystals. This behavior stands in stark contrast to that exhibited by more conventional crystal line semiconductors. We correlate the electronic spectra with the anti-Stokes and Stokes Raman vibrational spectra. Dielectric solvation theories, originally developed for excited molecules dissolved in polar liquids, reproduce our experimental observations. Our approach, which invokes a classical Debye-like relaxation process, captures the dielectric response originating from an anharmonic LO phonon at about 20 meV (160 cm-1) in the lead-bromide framework. We reconcile the liquid-like picture with more standard solid-state theories of the Stokes shift in crystalline semiconductors.
Scanning nanofocus X-ray diffraction (nXRD) performed at a synchrotron is used for the first time to simultaneously probe the morphology and the structural properties of spin-coated CH3NH3PbI3 (MAPI) perovskite films for photovoltaic devices. MAPI fi lms are spin-coated on a Si/SiO2/PEDOT:PSS substrate held at different temperatures during the deposition in order to tune the perovskite film coverage, and then investigated by nXRD, scanning electron microscopy (SEM) and grazing incidence wide angle X-ray scatter-ing (GI-WAXS). The advantages of nXRD over SEM and GI-WAXS are dis-cussed. A method to visualize, selectively isolate, and structurally charac-terize single perovskite grains buried within a complex, polycrystalline film is developed. The results of nXRD measurements are correlated with solar cell device measurements, and it is shown that spin-coating the perovskite precursor solution at elevated temperatures leads to improved surface coverage and enhanced solar cell performance.
Hybrid organic-inorganic halide perovskites with the prototype material of CH$_{3}$NH$_{3}$PbI$_{3}$ have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceed ing 20% achieved by their solar cells, two key issues -- the poor device stabilities associated with their intrinsic material instability and the toxicity due to water soluble Pb$^{2+}$ -- need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb$^{2+}$ ions into one monovalent M$^{+}$ and one trivalent M$^{3+}$ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify eleven optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا