ﻻ يوجد ملخص باللغة العربية
A model of an autonomous three-sphere microswimmer is proposed by implementing a coupling effect between the two natural lengths of an elastic microswimmer. Such a coupling mechanism is motivated by the previous models for synchronization phenomena in coupled oscillator systems. We numerically show that a microswimmer can acquire a nonzero steady state velocity and a finite phase difference between the oscillations in the natural lengths. These velocity and phase difference are almost independent of the initial phase difference. There is a finite range of the coupling parameter for which a microswimmer can have an autonomous directed motion. The stability of the phase difference is investigated both numerically and analytically in order to determine its bifurcation structure.
We propose a model for a thermally driven microswimmer in which three spheres are connected by two springs with odd elasticity. We demonstrate that the presence of odd elasticity leads to the directional locomotion of the stochastic microswimmer.
We explore the behavior of micron-scale autophoretic Janus (Au/Pt) rods, having various Au/Pt length ratios, swimming near a wall in an imposed background flow. We find that their ability to robustly orient and move upstream, i.e. to rheotax, depends
A paradigmatic microswimmer is the three-linked-spheres model, which follows a minimalist approach for propulsion by shape shifting. As such, it has been the subject of numerous analytical and numerical studies. In this Rapid Communication, an experi
The survival of many microorganisms, like textit{Leptospira} or textit{Spiroplasma} bacteria, can depend on their ability to navigate towards regions of favorable viscosity. While this ability, called viscotaxis, has been observed in several bacteria
Hydrodynamic interactions are crucial for determining the cooperative behavior of microswimmers at low Reynolds numbers. Here we provide a comprehensive analysis of the scaling and strength of the interactions in the case of a pair of three-sphere sw