ﻻ يوجد ملخص باللغة العربية
We explore the behavior of micron-scale autophoretic Janus (Au/Pt) rods, having various Au/Pt length ratios, swimming near a wall in an imposed background flow. We find that their ability to robustly orient and move upstream, i.e. to rheotax, depends strongly on the Au/Pt ratio, which is easily tunable in synthesis. Numerical simulations of swimming rods actuated by a surface slip show a similar rheotactic tunability when varying the location of the surface slip versus surface drag. Slip location determines whether swimmers are Pushers (rear-actuated), Pullers (front-actuated), or in between. Our simulations and modeling show that Pullers rheotax most robustly due to their larger tilt angle to the wall, which makes them responsive to flow gradients. Thus, rheotactic response infers the nature of difficult to measure flow-fields of an active particle, establishes its dependence on swimmer type, and shows how Janus rods can be tuned for flow responsiveness. We demonstrate the effectiveness of a simple geometric sieve for rheotactic ability.
We propose a model for a thermally driven microswimmer in which three spheres are connected by two springs with odd elasticity. We demonstrate that the presence of odd elasticity leads to the directional locomotion of the stochastic microswimmer.
A model of an autonomous three-sphere microswimmer is proposed by implementing a coupling effect between the two natural lengths of an elastic microswimmer. Such a coupling mechanism is motivated by the previous models for synchronization phenomena i
A paradigmatic microswimmer is the three-linked-spheres model, which follows a minimalist approach for propulsion by shape shifting. As such, it has been the subject of numerous analytical and numerical studies. In this Rapid Communication, an experi
The survival of many microorganisms, like textit{Leptospira} or textit{Spiroplasma} bacteria, can depend on their ability to navigate towards regions of favorable viscosity. While this ability, called viscotaxis, has been observed in several bacteria
Hydrodynamic interactions are crucial for determining the cooperative behavior of microswimmers at low Reynolds numbers. Here we provide a comprehensive analysis of the scaling and strength of the interactions in the case of a pair of three-sphere sw