ترغب بنشر مسار تعليمي؟ اضغط هنا

VICTR: Visual Information Captured Text Representation for Text-to-Image Multimodal Tasks

143   0   0.0 ( 0 )
 نشر من قبل Siqu Long
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text-to-image multimodal tasks, generating/retrieving an image from a given text description, are extremely challenging tasks since raw text descriptions cover quite limited information in order to fully describe visually realistic images. We propose a new visual contextual text representation for text-to-image multimodal tasks, VICTR, which captures rich visual semantic information of objects from the text input. First, we use the text description as initial input and conduct dependency parsing to extract the syntactic structure and analyse the semantic aspect, including object quantities, to extract the scene graph. Then, we train the extracted objects, attributes, and relations in the scene graph and the corresponding geometric relation information using Graph Convolutional Networks, and it generates text representation which integrates textual and visual semantic information. The text representation is aggregated with word-level and sentence-level embedding to generate both visual contextual word and sentence representation. For the evaluation, we attached VICTR to the state-of-the-art models in text-to-image generation.VICTR is easily added to existing models and improves across both quantitative and qualitative aspects.

قيم البحث

اقرأ أيضاً

128 - Kunpeng Li , Yulun Zhang , Kai Li 2019
Image-text matching has been a hot research topic bridging the vision and language areas. It remains challenging because the current representation of image usually lacks global semantic concepts as in its corresponding text caption. To address this issue, we propose a simple and interpretable reasoning model to generate visual representation that captures key objects and semantic concepts of a scene. Specifically, we first build up connections between image regions and perform reasoning with Graph Convolutional Networks to generate features with semantic relationships. Then, we propose to use the gate and memory mechanism to perform global semantic reasoning on these relationship-enhanced features, select the discriminative information and gradually generate the representation for the whole scene. Experiments validate that our method achieves a new state-of-the-art for the image-text matching on MS-COCO and Flickr30K datasets. It outperforms the current best method by 6.8% relatively for image retrieval and 4.8% relatively for caption retrieval on MS-COCO (Recall@1 using 1K test set). On Flickr30K, our model improves image retrieval by 12.6% relatively and caption retrieval by 5.8% relatively (Recall@1). Our code is available at https://github.com/KunpengLi1994/VSRN.
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5, enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored f or data-to-text generation, as well as alternative language model based pre-training techniques such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-of-domain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.
Text-based visual question answering (VQA) requires to read and understand text in an image to correctly answer a given question. However, most current methods simply add optical character recognition (OCR) tokens extracted from the image into the VQ A model without considering contextual information of OCR tokens and mining the relationships between OCR tokens and scene objects. In this paper, we propose a novel text-centered method called RUArt (Reading, Understanding and Answering the Related Text) for text-based VQA. Taking an image and a question as input, RUArt first reads the image and obtains text and scene objects. Then, it understands the question, OCRed text and objects in the context of the scene, and further mines the relationships among them. Finally, it answers the related text for the given question through text semantic matching and reasoning. We evaluate our RUArt on two text-based VQA benchmarks (ST-VQA and TextVQA) and conduct extensive ablation studies for exploring the reasons behind RUArts effectiveness. Experimental results demonstrate that our method can effectively explore the contextual information of the text and mine the stable relationships between the text and objects.
This paper considers the task of matching images and sentences by learning a visual-textual embedding space for cross-modal retrieval. Finding such a space is a challenging task since the features and representations of text and image are not compara ble. In this work, we introduce an end-to-end deep multimodal convolutional-recurrent network for learning both vision and language representations simultaneously to infer image-text similarity. The model learns which pairs are a match (positive) and which ones are a mismatch (negative) using a hinge-based triplet ranking. To learn about the joint representations, we leverage our newly extracted collection of tweets from Twitter. The main characteristic of our dataset is that the images and tweets are not standardized the same as the benchmarks. Furthermore, there can be a higher semantic correlation between the pictures and tweets contrary to benchmarks in which the descriptions are well-organized. Experimental results on MS-COCO benchmark dataset show that our model outperforms certain methods presented previously and has competitive performance compared to the state-of-the-art. The code and dataset have been made available publicly.
The milestone improvements brought about by deep representation learning and pre-training techniques have led to large performance gains across downstream NLP, IR and Vision tasks. Multimodal modeling techniques aim to leverage large high-quality vis io-linguistic datasets for learning complementary information (across image and text modalities). In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset (https://github.com/google-research-datasets/wit) to better facilitate multimodal, multilingual learning. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal models, as we show when applied to downstream tasks such as image-text retrieval. WIT has four main and unique advantages. First, WIT is the largest multimodal dataset by the number of image-text examples by 3x (at the time of writing). Second, WIT is massively multilingual (first of its kind) with coverage over 100+ languages (each of which has at least 12K examples) and provides cross-lingual texts for many images. Third, WIT represents a more diverse set of concepts and real world entities relative to what previous datasets cover. Lastly, WIT provides a very challenging real-world test set, as we empirically illustrate using an image-text retrieval task as an example.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا