ﻻ يوجد ملخص باللغة العربية
The distinguishability of quantum states is important in quantum information theory and has been considered by authors. However, there were no general results considering whether a set of indistinguishable states become distinguishable by viewing them in a larger system without employing extra resources. In this paper, we consider this question for LOCC$_{1}$, PPT and SEP distinguishabilities of states. We use mathematical methods to show that if a set of states is indistinguishable in $otimes _{k=1}^{K} C^{d _{k}}$, then it is indistinguishable even being viewed in $otimes _{k=1}^{K} C^{d _{k}+h _{k}}$, where $K, d _{k}geqslant2$, $h _{k}geqslant0$ are integers. This shows that LOCC$_{1}$, PPT and SEP distinguishabilities of states are properties of states themselves and independent of the dimension of quantum system. With these results, we can give the maximal number of states which can be distinguished via LOCC$_{1}$ and construct a LOCC indistinguishable basis of product states in a general system. Note that our results are also suitable for unambiguous discriminations. Also, we give a conjecture for other distinguishabilities and a framework by defining the Local-global indistinguishable property. Instead of considering such problems for special sets or special systems, we consider the problems for general states in general systems, which have not been considered yet, for our knowledge.
We study the extent to which psi-epistemic models for quantum measurement statistics---models where the quantum state does not have a real, ontic status---can explain the indistinguishability of nonorthogonal quantum states. This is done by comparing
The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform limited pulses. The entanglement between single photons and outer environment or other photons indu
We observe that quantum indistinguishability is a dynamical effect dependent on measurement duration. We propose a quantitative criterion for observing indistinguishability in quantum fluids and its implications including quantum statistics and deriv
We consider the optimal cloning of quantum coherent states with single-clone and joint fidelity as figures of merit. Both optimal fidelities are attained for phase space translation covariant cloners. Remarkably, the joint fidelity is maximized by a
We propose a quantum system in which the winding number of rotations of a particle around a ring can be monitored and emerges as a physical observable. We explicitly analyze the situation when, as a result of the monitoring of the winding number, the