ﻻ يوجد ملخص باللغة العربية
We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space, and study generalized Ruelle operators and $ C^{ast} $-algebras associated to these groupoids. We provide a new characterization of $ 1 $-cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $-tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle-Perron-Frobenius theory for dynamical systems of several commuting operators ($ k $-Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{ast} $-algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence-uniqueness results for KMS states associated to the graphs.
Let $G$ be a Hausdorff, etale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^0)$ are infinite in $C_r^*(G)$. If $G$ is a Hausdorff, am
We show that layer potential groupoids for conical domains constructed in an earlier paper (Carvalho-Qiao, Central European J. Math., 2013) are Fredholm groupoids, which enables us to deal with many analysis problems on singular spaces in a unified t
We consider a twisted action of a discrete group G on a unital C*-algebra A and give conditions ensuring that there is a bijective correspondence between the maximal invariant ideals of A and the maximal ideals in the associated reduced C*-crossed product.
Motivated by noncommutative geometry and quantum physics, the concept of `metric operator field is introduced. Roughly speaking, a metric operator field is a vector field on a set with values in self tensor product of a bundle of C*-algebras, satisfy
Given a higher-rank graph $Lambda$, we investigate the relationship between the cohomology of $Lambda$ and the cohomology of the associated groupoid $G_Lambda$. We define an exact functor between the abelian category of right modules over a higher-ra