ترغب بنشر مسار تعليمي؟ اضغط هنا

On maximal ideals in certain reduced twisted C*-crossed products

237   0   0.0 ( 0 )
 نشر من قبل Erik Bedos
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a twisted action of a discrete group G on a unital C*-algebra A and give conditions ensuring that there is a bijective correspondence between the maximal invariant ideals of A and the maximal ideals in the associated reduced C*-crossed product.



قيم البحث

اقرأ أيضاً

A C*-dynamical system is said to have the ideal separation property if every ideal in the corresponding crossed product arises from an invariant ideal in the C*-algebra. In this paper we characterize this property for unital C*-dynamical systems over discrete groups. To every C*-dynamical system we associate a twisted partial C*-dynamical system that encodes much of the structure of the action. This system can often be untwisted, for example when the algebra is commutative, or when the algebra is prime and a certain specific subgroup has vanishing Mackey obstruction. In this case, we obtain relatively simple necessary and sufficient conditions for the ideal separation property. A key idea is a notion of noncommutative boundary for a C*-dynamical system that generalizes Furstenbergs notion of topological boundary for a group.
We investigate properties of commutative subrings and ideals in non-commutative algebraic crossed products for actions by arbitrary groups. A description of the commutant of the base coefficient subring in the crossed product ring is given. Condition s for commutativity and maximal commutativity of the commutant of the base subring are provided in terms of the action as well as in terms of the intersection of ideals in the crossed product ring with the base subring, specially taking into account both the case of base rings without non-trivial zero-divisors and the case of base rings with non-trivial zero-divisors.
A partial action is associated with a normal weakly left resolving labelled space such that the crossed product and labelled space $C^*$-algebras are isomorphic. An improved characterization of simplicity for labelled space $C^*$-algebras is given and applied to $C^*$-algebras of subshifts.
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. We complement our generic results with the detailed study of many important special cases. In particular we study crossed products of tensor algebras, triangular AF algebras and various associated C*-algebras. We make contributions to the study of C*-envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. We also answer questions from the pertinent literature.
Starting from a discrete $C^*$-dynamical system $(mathfrak{A}, theta, omega_o)$, we define and study most of the main ergodic properties of the crossed product $C^*$-dynamical system $(mathfrak{A}rtimes_alphamathbb{Z}, Phi_{theta, u},om_ocirc E)$, $E :mathfrak{A}rtimes_alphamathbb{Z}rightarrowga$ being the canonical conditional expectation of $mathfrak{A}rtimes_alphamathbb{Z}$ onto $mathfrak{A}$, provided $ainaut(ga)$ commute with the $*$-automorphism $th$ up tu a unitary $uinga$. Here, $Phi_{theta, u}inaut(mathfrak{A}rtimes_alphamathbb{Z})$ can be considered as the fully noncommutative generalisation of the celebrated skew-product defined by H. Anzai for the product of two tori in the classical case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا