ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of X-ray AGN at 0.5 < z < 4.5: host galaxies dictate dark matter halo mass

75   0   0.0 ( 0 )
 نشر من قبل Charutha Krishnan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence that AGN do not reside in ``special environments, but instead show large-scale clustering determined by the properties of their host galaxies. Our study is based on an angular cross-correlation analysis applied to X-ray selected AGN in the COSMOS and UDS fields, spanning redshifts from $zsim4.5$ to $zsim0.5$. Consistent with previous studies, we find that AGN at all epochs are on average hosted by galaxies in dark matter halos of $10^{12}-10^{13}$ M$_{odot}$, intermediate between star-forming and passive galaxies. We find, however, that the same clustering signal can be produced by inactive (i.e. non-AGN) galaxies closely matched to the AGN in spectral class, stellar mass and redshift. We therefore argue that the inferred bias for AGN lies in between the star-forming and passive galaxy populations because AGN host galaxies are comprised of a mixture of the two populations. Although AGN hosted by higher mass galaxies are more clustered than lower mass galaxies, this stellar mass dependence disappears when passive host galaxies are removed. The strength of clustering is also largely independent of AGN X-ray luminosity. We conclude that the most important property that determines the clustering in a given AGN population is the fraction of passive host galaxies. We also infer that AGN luminosity is likely not driven by environmental triggering, and further hypothesise that AGN may be a stochastic phenomenon without a strong dependence on environment.

قيم البحث

اقرأ أيضاً

Data from the AEGIS, COSMOS and ECDFS surveys are combined to infer the bias and dark matter halo mass of moderate luminosity [LX(2-10 keV) = 42.9 erg s-1] X-ray AGN at z~1 via their cross-correlation function with galaxies. In contrast to standard c ross-correlation function estimators, we present a method that requires spectroscopy only for the AGN and uses photometric redshift probability distribution functions for galaxies to determine the projected real-space AGN/galaxy cross-correlation function. The estimated dark matter halo mass of X-ray AGN in the combined AEGIS, COSMOS and ECDFS fields is ~13h-1M_solar, in agreement with previous studies at similar redshift and luminosity ranges. Removing from the sample the 5 per cent of the AGN associated with X-ray selected groups results in a reduction by about 0.5 dex in the inferred AGN dark matter halo mass. The distribution of AGN in dark matter halo mass is therefore skewed and the bulk of the population lives in moderate mass haloes. This result favour cold gas accretion as the main channel of supermassive black hole growth for most X-ray AGN.
Emission line galaxies (ELGs) are used in several ongoing and upcoming surveys (SDSS-IV/eBOSS, DESI) as tracers of the dark matter distribution. Using a new galaxy formation model, we explore the characteristics of [OII] emitters, which dominate opti cal ELG selections at $zsimeq 1$. Model [OII] emitters at $0.5<z<1.5$ are selected to mimic the DEEP2, VVDS, eBOSS and DESI surveys. The luminosity functions of model [OII] emitters are in reasonable agreement with observations. The selected [OII] emitters are hosted by haloes with $M_{rm halo}geq 10^{10.3}h^{-1}{rm M}_{odot}$, with ~90% of them being central star-forming galaxies. The predicted mean halo occupation distributions of [OII] emitters has a shape typical of that inferred for star-forming galaxies, with the contribution from central galaxies, $langle N rangle_{left[OIIright], cen}$, being far from the canonical step function. The $langle N rangle_{left[OIIright], cen}$ can be described as the sum of an asymmetric Gaussian for disks and a step function for spheroids, which plateaus below unity. The model [OII] emitters have a clustering bias close to unity, which is below the expectations for eBOSS and DESI ELGs. At $zsim 1$, a comparison with observed g-band selected galaxy, which are expected to be dominated by [OII] emitters, indicates that our model produces too few [OII] emitters that are satellite galaxies. This suggests the need to revise our modelling of hot gas stripping in satellite galaxies.
We combine multiwavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected AGN [Lx(2-10keV)>1e42 erg/s] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/P EP survey (PACS Evolutionary Probe; Lir>1e11 solar) and quiescent systems at z~1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift Probability Distribution Functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6<z<1.4 are found in halos of similar mass, $log M_{DMH}/(M_{odot},h^{-1})approx13.0$. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of $log M_{DMH}/(M_{odot},h^{-1})approx13.0$ independent of their star-formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large scale environment may be related to differences in the stellar mass of the host galaxies.
Since z~1, the stellar mass density locked in low mass groups and clusters has grown by a factor of ~8. Here we make the first statistical measurements of the stellar mass content of low mass X-ray groups at 0.5<z<1, enabling the calibration of stell ar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South (CDFS). These ultra-deep observations allow us to identify bona fide low mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ~3-4% of the total mass of group halos with masses 10^{12.8}<M200/Msun<10^{13.5} (about the mass of Fornax and 1/50th the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar-halo mass relation is ~0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar-halo mass relation since z<1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies.
We present the results from a study of the host galaxies of 15 optically selected AGNs with 0.5<z<1.1 from GEMS. GEMS is a Hubble Space Telescope imaging survey of a ~28x28 contiguous field centered on the Chandra Deep Field South in the F606W and F8 50LP filter bands. It incorporates the SEDs and redshifts of ~10000 objects, obtained by the COMBO-17 project. We have detected the host galaxies of all 15 AGNs in the F850LP-band (and 13/15 in the F606W-band), recovering their fluxes, morphologies and structural parameters. We find that 80% of the host galaxies have early-type (bulge-dominated) morphologies, while the rest have structures characteristic of late-type (disk-dominated) galaxies. We find that 25% of the early types, and 30% of the late types, exhibit disturbances consistent with galaxy interactions. The hosts show a wide range of colors, from those of red-sequence galaxies to blue colors consistent with ongoing star formation. Roughly 70% of the morphologically early-type hosts have rest-frame blue colors, a much larger fraction than those typical of non-active morphologically early-type galaxies in this redshift and luminosity range. Yet, we find that the early-type hosts are structurally similar to red-sequence ellipticals, inasmuch as they follow an absolute magnitude versus half-light size correlation that are consistent with the mean relation for early-type galaxies at similar redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا