ﻻ يوجد ملخص باللغة العربية
Humans use language to accomplish a wide variety of tasks - asking for and giving advice being one of them. In online advice forums, advice is mixed in with non-advice, like emotional support, and is sometimes stated explicitly, sometimes implicitly. Understanding the language of advice would equip systems with a better grasp of language pragmatics; practically, the ability to identify advice would drastically increase the efficiency of advice-seeking online, as well as advice-giving in natural language generation systems. We present a dataset in English from two Reddit advice forums - r/AskParents and r/needadvice - annotated for whether sentences in posts contain advice or not. Our analysis reveals rich linguistic phenomena in advice discourse. We present preliminary models showing that while pre-trained language models are able to capture advice better than rule-based systems, advice identification is challenging, and we identify directions for future research. Comments: To be presented at EMNLP 2020.
Due to their unique persuasive power, language-capable robots must be able to both act in line with human moral norms and clearly and appropriately communicate those norms. These requirements are complicated by the possibility that humans may ascribe
Is it possible to use natural language to intervene in a models behavior and alter its prediction in a desired way? We investigate the effectiveness of natural language interventions for reading-comprehension systems, studying this in the context of
The bin covering problem asks for covering a maximum number of bins with an online sequence of $n$ items of different sizes in the range $(0,1]$; a bin is said to be covered if it receives items of total size at least 1. We study this problem in the
The priority model of greedy-like algorithms was introduced by Borodin, Nielsen, and Rackoff in 2002. We augment this model by allowing priority algorithms to have access to advice, i.e., side information precomputed by an all-powerful oracle. Obtain
The priority model was introduced by Borodin, Rackoff, and Nielsen (2003) to capture greedy-like algorithms. Motivated by the success of advice complexity in the area of online algorithms, Borodin et al. (2020) extended the fixed priority model to in