ﻻ يوجد ملخص باللغة العربية
Recent developments in superconducting radio-frequency (SRF) research have focused primarily on high frequency elliptical cavities for electron accelerators. Advances have been made in both reducing RF surface resistance and pushing the readily achievable accelerating gradient by using novel SRF cavity treatments including surface processing, custom heat treatments, and flux expulsion. Despite the global demand for SRF based hadron accelerators, the advancement of TEM mode cavities has lagged behind. To address this, two purpose-built research cavities, one quarter-wave and one half-wave resonator, have been designed and built to allow characterization of TEM-mode cavities with standard and novel surface treatments. The cavities are intended as the TEM mode equivalent to the 1.3GHz single cell cavity, which is the essential tool for high frequency cavity research. Given their coaxial structure, the cavities allow testing at the fundamental mode and higher harmonics, giving unique insight into the role of RF frequency on fundamental loss mechanisms from intrinsic and extrinsic sources. In this paper, the cavities and testing infrastructure are described and the first performance measurements of both cavities are presented.
In this letter, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic f
Buffered Chemical Polishing (BCP) was the most conventional polishing method for superconducting radio frequency (SRF) Niobium (Nb) cavity surface preparation before the discovery of Electropolishing (EP), which is superior to BCP in high gradient pe
The surface resistance of an RF superconductor depends on the surface temperature, the residual resistance and various superconductor parameters, e.g. the energy gap, and the electron mean free path. These parameters can be determined by measuring th
Cool-down dynamics of superconducting accelerating cavities became particularly important for obtaining very high quality factors in SRF cavities. Previous studies proved that when cavity is cooled fast, the quality factor is higher than when cavity
In this Letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavitie