ﻻ يوجد ملخص باللغة العربية
In this letter, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120 C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and that the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.
Recent developments in superconducting radio-frequency (SRF) research have focused primarily on high frequency elliptical cavities for electron accelerators. Advances have been made in both reducing RF surface resistance and pushing the readily achie
The surface resistance of an RF superconductor depends on the surface temperature, the residual resistance and various superconductor parameters, e.g. the energy gap, and the electron mean free path. These parameters can be determined by measuring th
Cool-down dynamics of superconducting accelerating cavities became particularly important for obtaining very high quality factors in SRF cavities. Previous studies proved that when cavity is cooled fast, the quality factor is higher than when cavity
Buffered Chemical Polishing (BCP) was the most conventional polishing method for superconducting radio frequency (SRF) Niobium (Nb) cavity surface preparation before the discovery of Electropolishing (EP), which is superior to BCP in high gradient pe
When a superconducting radiofrequency cavity is cooled through its critical temperature, ambient magnetic flux can become frozen in to the superconductor, resulting in degradation of the quality factor. This is especially problematic in applications