ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear photon trident versus double Compton scattering and resummation of one-step terms

148   0   0.0 ( 0 )
 نشر من قبل Greger Torgrimsson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the photon trident process, where an initial photon turns into an electron-positron pair and a final photon under a nonlinear interaction with a strong plane-wave background field. We show that this process is very similar to double Compton scattering, where an electron interacts with the background field and emits two photons. We also show how the one-step terms can be obtained by resumming the small- and large-$chi$ expansions. We consider a couple of different resummation methods, and also propose new resummations (involving Meijer-G functions) which have the correct type of expansions at both small and large $chi$. These new resummations require relatively few terms to give good precision.



قيم البحث

اقرأ أيضاً

We study single, double and higher-order nonlinear Compton scattering where an electron interacts nonlinearly with a high-intensity laser and emits one, two or more photons. We study, in particular, how double Compton scattering is separated into one -step and two-step parts, where the latter is obtained from an incoherent product of two single-photon emissions. We include all contributions to double Compton scattering and show that the exchange term, which was not calculated in previous constant-crossed field studies, is in general on the same order of magnitude as the other one-step terms. Our approach reveals practically useful similarities between double Compton scattering and the trident process, which allows us to transfer some of our previous results for trident to double Compton scattering. We provide a new gluing approach for obtaining the dominant contribution to higher-order Compton scattering for long laser pulses. Unlike the standard gluing approach, our new approach does not require the intensity parameter $a_0$ to be much larger than one. For `hard photons we obtain several saddle-point approximations for various field shapes.
123 - M.Galynskii 2000
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma-gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi^2 (first order correction). All this is necessary for optimization of the conversion region at photon colliders and study of physics processes where a sharp edge of the luminosity spectrum and monochromaticity of collisions are important.
141 - Greger Torgrimsson 2020
We study nonlinear trident in laser pulses in the high-energy limit, where the initial electron experiences, in its rest frame, an electromagnetic field strength above Schwingers critical field. At lower energies the dominant contribution comes from the two-step part, but in the high-energy limit the dominant contribution comes instead from the one-step term. We obtain new approximations that explain the relation between the high-energy limit of trident and pair production by a Coulomb field, as well as the role of the Weizsacker-Williams approximation and why it does not agree with the high-$chi$ limit of the locally-constant-field approximation. We also show that the next-to-leading order in the large-$a_0$ expansion is, in the high-energy limit, nonlocal and is numerically very important even for quite large $a_0$. We show that the small-$a_0$ perturbation series has a finite radius of convergence, but using Pade-conformal methods we obtain resummations that go beyond the radius of convergence and have a large numerical overlap with the large-$a_0$ approximation. We use Borel-Pade-conformal methods to resum the small-$chi$ expansion and obtain a high precision up to very large $chi$. We also use newer resummation methods based on hypergeometric/Meijer-G and confluent hypergeometric functions.
114 - Javier L. Albacete 2015
We present a global fit to HERA data on the reduced cross section measured in electron-proton collisions in the region of small Bjorken-$x$: $xle x_0=10^{-2}$ and moderate to high values of the virtuality $Q^2<Q^2_{max}=650$ GeV$^2$. The main dynamic al ingredients in the fits are two recently proposed improved BK equations for the description of the small-$x$ evolution of the dipole scattering amplitude. These two new equations provide an all-order resummation of double collinear logarithms that arise beyond leading logarithmic accuracy. We show that a very good description of data is possible in both cases, provided the parent dipole or smallest dipole prescriptions are employed for the running of the coupling.
122 - T. Heinzl , D. Seipt , B. Kampfer 2009
We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus are the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzi ng the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focussing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focussing, hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity induced spectral red-shift, higher harmonics, and their substructure, becomes feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا