ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Unit Disk Contact Representations for Graphs without Embedding

292   0   0.0 ( 0 )
 نشر من قبل Jonas Cleve
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jonas Cleve




اسأل ChatGPT حول البحث

Weak unit disk contact graphs are graphs that admit representing nodes as a collection of internally disjoint unit disks whose boundaries touch if there is an edge between the corresponding nodes. In this work we focus on graphs without embedding, i.e., the neighbor order can be chosen arbitrarily. We give a linear time algorithm to recognize whether a caterpillar, a graph where every node is adjacent to or on a central path, allows a weak unit disk contact representation. On the other hand, we show that it is NP-hard to decide whether a tree allows such a representation.

قيم البحث

اقرأ أيضاً

Weak unit disk contact graphs are graphs that admit a representation of the nodes as a collection of internally disjoint unit disks whose boundaries touch if there is an edge between the corresponding nodes. We provide a gadget-based reduction to sho w that recognizing embedded caterpillars that admit a weak unit disk contact representation is NP-hard.
Let $Vsubsetmathbb{R}^2$ be a set of $n$ sites in the plane. The unit disk graph $DG(V)$ of $V$ is the graph with vertex set $V$ in which two sites $v$ and $w$ are adjacent if and only if their Euclidean distance is at most $1$. We develop a compact routing scheme for $DG(V)$. The routing scheme preprocesses $DG(V)$ by assigning a label $l(v)$ to every site $v$ in $V$. After that, for any two sites $s$ and $t$, the scheme must be able to route a packet from $s$ to $t$ as follows: given the label of a current vertex $r$ (initially, $r=s$) and the label of the target vertex $t$, the scheme determines a neighbor $r$ of $r$. Then, the packet is forwarded to $r$, and the process continues until the packet reaches its desired target $t$. The resulting path between the source $s$ and the target $t$ is called the routing path of $s$ and $t$. The stretch of the routing scheme is the maximum ratio of the total Euclidean length of the routing path and of the shortest path in $DG(V)$, between any two sites $s, t in V$. We show that for any given $varepsilon>0$, we can construct a routing scheme for $DG(V)$ with diameter $D$ that achieves stretch $1+varepsilon$ and label size $O(log Dlog^3n/loglog n)$ (the constant in the $O$-Notation depends on $varepsilon$). In the past, several routing schemes for unit disk graphs have been proposed. Our scheme is the first one to achieve poly-logarithmic label size and arbitrarily small stretch without storing any additional information in the packet.
A unit disk intersection representation (UDR) of a graph $G$ represents each vertex of $G$ as a unit disk in the plane, such that two disks intersect if and only if their vertices are adjacent in $G$. A UDR with interior-disjoint disks is called a un it disk contact representation (UDC). We prove that it is NP-hard to decide if an outerplanar graph or an embedded tree admits a UDR. We further provide a linear-time decidable characterization of caterpillar graphs that admit a UDR. Finally we show that it can be decided in linear time if a lobster graph admits a weak UDC, which permits intersections between disks of non-adjacent vertices.
75 - Haitao Wang , Yiming Zhao 2021
Given a set P of n points in the plane, a unit-disk graph G_{r}(P) with respect to a radius r is an undirected graph whose vertex set is P such that an edge connects two points p, q in P if the Euclidean distance between p and q is at most r. The len gth of any path in G_r(P) is the number of edges of the path. Given a value lambda>0 and two points s and t of P, we consider the following reverse shortest path problem: finding the smallest r such that the shortest path length between s and t in G_r(P) is at most lambda. It was known previously that the problem can be solved in O(n^{4/3} log^3 n) time. In this paper, we present an algorithm of O(lfloor lambda rfloor cdot n log n) time and another algorithm of O(n^{5/4} log^2 n) time.
We prove a geometric version of the graph separator theorem for the unit disk intersection graph: for any set of $n$ unit disks in the plane there exists a line $ell$ such that $ell$ intersects at most $O(sqrt{(m+n)log{n}})$ disks and each of the hal fplanes determined by $ell$ contains at most $2n/3$ unit disks from the set, where $m$ is the number of intersecting pairs of disks. We also show that an axis-parallel line intersecting $O(sqrt{m+n})$ disks exists, but each halfplane may contain up to $4n/5$ disks. We give an almost tight lower bound (up to sublogarithmic factors) for our approach, and also show that no line-separator of sublinear size in $n$ exists when we look at disks of arbitrary radii, even when $m=0$. Proofs are constructive and suggest simple algorithms that run in linear time. Experimental evaluation has also been conducted, which shows that for random instances our method outperforms the method by Fox and Pach (whose separator has size $O(sqrt{m})$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا