ترغب بنشر مسار تعليمي؟ اضغط هنا

Corpora Evaluation and System Bias Detection in Multi-document Summarization

61   0   0.0 ( 0 )
 نشر من قبل Tanmoy Chakraborty
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-document summarization (MDS) is the task of reflecting key points from any set of documents into a concise text paragraph. In the past, it has been used to aggregate news, tweets, product reviews, etc. from various sources. Owing to no standard definition of the task, we encounter a plethora of datasets with varying levels of overlap and conflict between participating documents. There is also no standard regarding what constitutes summary information in MDS. Adding to the challenge is the fact that new systems report results on a set of chosen datasets, which might not correlate with their performance on the other datasets. In this paper, we study this heterogeneous task with the help of a few widely used MDS corpora and a suite of state-of-the-art models. We make an attempt to quantify the quality of summarization corpus and prescribe a list of points to consider while proposing a new MDS corpus. Next, we analyze the reason behind the absence of an MDS system which achieves superior performance across all corpora. We then observe the extent to which system metrics are influenced, and bias is propagated due to corpus properties. The scripts to reproduce the experiments in this work are available at https://github.com/LCS2-IIITD/summarization_bias.git.



قيم البحث

اقرأ أيضاً

Text summarization refers to the process that generates a shorter form of text from the source document preserving salient information. Many existing works for text summarization are generally evaluated by using recall-oriented understudy for gisting evaluation (ROUGE) scores. However, as ROUGE scores are computed based on n-gram overlap, they do not reflect semantic meaning correspondences between generated and reference summaries. Because Korean is an agglutinative language that combines various morphemes into a word that express several meanings, ROUGE is not suitable for Korean summarization. In this paper, we propose evaluation metrics that reflect semantic meanings of a reference summary and the original document, Reference and Document Aware Semantic Score (RDASS). We then propose a method for improving the correlation of the metrics with human judgment. Evaluation results show that the correlation with human judgment is significantly higher for our evaluation metrics than for ROUGE scores.
129 - Darsh J Shah , Lili Yu , Tao Lei 2021
We present a method for generating comparative summaries that highlights similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summar ization systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.
Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel sum marization system called TCSum, which leverages plentiful text classification data to improve the performance of multi-document summarization. TCSum projects documents onto distributed representations which act as a bridge between text classification and summarization. It also utilizes the classification results to produce summaries of different styles. Extensive experiments on DUC generic multi-document summarization datasets show that, TCSum can achieve the state-of-the-art performance without using any hand-crafted features and has the capability to catch the variations of summary styles with respect to different text categories.
To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MS^2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20k summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our systems generated summaries. Data and models are available at https://github.com/allenai/ms2
The progress in Query-focused Multi-Document Summarization (QMDS) has been limited by the lack of sufficient largescale high-quality training datasets. We present two QMDS training datasets, which we construct using two data augmentation methods: (1) transferring the commonly used single-document CNN/Daily Mail summarization dataset to create the QMDSCNN dataset, and (2) mining search-query logs to create the QMDSIR dataset. These two datasets have complementary properties, i.e., QMDSCNN has real summaries but queries are simulated, while QMDSIR has real queries but simulated summaries. To cover both these real summary and query aspects, we build abstractive end-to-end neural network models on the combined datasets that yield new state-of-the-art transfer results on DUC datasets. We also introduce new hierarchical encoders that enable a more efficient encoding of the query together with multiple documents. Empirical results demonstrate that our data augmentation and encoding methods outperform baseline models on automatic metrics, as well as on human evaluations along multiple attributes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا