ترغب بنشر مسار تعليمي؟ اضغط هنا

Facebook Political Ads And Accountability: Outside Groups Are Most Negative, Especially When Disappearing Or Hiding Donors

98   0   0.0 ( 0 )
 نشر من قبل Shomik Jain
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of online political advertising has come with little regulation, allowing political advertisers on social media to avoid accountability. We analyze how transparency deficits caused by dark money and group impermanence relate to the sentiment of political ads on Facebook. We obtained 525,796 ads with FEC-registered advertisers from Facebooks ad library that ran between August-November 2018. We compare ads run by candidates, parties, and outside groups, which we classify by (i) their donor transparency (dark money or disclosed) and (ii) the groups permanence (disappearing after 2018 or re-registering). Ads run by dark money and disappearing outside groups were more negative than transparent and re-registering groups, respectively. Outside groups as a whole also ran more negative ads than candidates and parties. These results suggest that transparency for political speech is associated with advertising tone: the most negative advertising comes from organizations with less donor disclosure and permanence.



قيم البحث

اقرأ أيضاً

In the global move toward urbanization, making sure the people remaining in rural areas are not left behind in terms of development and policy considerations is a priority for governments worldwide. However, it is increasingly challenging to track im portant statistics concerning this sparse, geographically dispersed population, resulting in a lack of reliable, up-to-date data. In this study, we examine the usefulness of the Facebook Advertising platform, which offers a digital census of over two billions of its users, in measuring potential rural-urban inequalities. We focus on Italy, a country where about 30% of the population lives in rural areas. First, we show that the population statistics that Facebook produces suffer from instability across time and incomplete coverage of sparsely populated municipalities. To overcome such limitation, we propose an alternative methodology for estimating Facebook Ads audiences that nearly triples the coverage of the rural municipalities from 19% to 55% and makes feasible fine-grained sub-population analysis. Using official national census data, we evaluate our approach and confirm known significant urban-rural divides in terms of educational attainment and income. Extending the analysis to Facebook-specific user interests and behaviors, we provide further insights on the divide, for instance, finding that rural areas show a higher interest in gambling. Notably, we find that the most predictive features of income in rural areas differ from those for urban centres, suggesting researchers need to consider a broader range of attributes when examining rural wellbeing. The findings of this study illustrate the necessity of improving existing tools and methodologies to include under-represented populations in digital demographic studies -- the failure to do so could result in misleading observations, conclusions, and most importantly, policies.
Social media provides many opportunities to monitor and evaluate political phenomena such as referendums and elections. In this study, we propose a set of approaches to analyze long-running political events on social media with a real-world experimen t: the debate about Brexit, i.e., the process through which the United Kingdom activated the option of leaving the European Union. We address the following research questions: Could Twitter-based stance classification be used to demonstrate public stance with respect to political events? What is the most efficient and comprehensive approach to measuring the impact of politicians on social media? Which of the polarized sides of the debate is more responsive to politician messages and the main issues of the Brexit process? What is the share of bot accounts in the Brexit discussion and which side are they for? By combining the user stance classification, topic discovery, sentiment analysis, and bot detection, we show that it is possible to obtain useful insights about political phenomena from social media data. We are able to detect relevant topics in the discussions, such as the demand for a new referendum, and to understand the position of social media users with respect to the different topics in the debate. Our comparative and temporal analysis of political accounts can detect the critical periods of the Brexit process and the impact they have on the debate.
Ending poverty in all its forms everywhere is the number one Sustainable Development Goal of the UN 2030 Agenda. To monitor the progress towards such an ambitious target, reliable, up-to-date and fine-grained measurements of socioeconomic indicators are necessary. When it comes to socioeconomic development, novel digital traces can provide a complementary data source to overcome the limits of traditional data collection methods, which are often not regularly updated and lack adequate spatial resolution. In this study, we collect publicly available and anonymous advertising audience estimates from Facebook to predict socioeconomic conditions of urban residents, at a fine spatial granularity, in four large urban areas: Atlanta (USA), Bogota (Colombia), Santiago (Chile), and Casablanca (Morocco). We find that behavioral attributes inferred from the Facebook marketing platform can accurately map the socioeconomic status of residential areas within cities, and that predictive performance is comparable in both high and low-resource settings. We also show that training a model on attributes of adult Facebook users, aged more than 25, leads to a more accurate mapping of socioeconomic conditions in all cities. Our work provides additional evidence of the value of social advertising media data to measure human development.
In times marked by political turbulence and uncertainty, as well as increasing divisiveness and hyperpartisanship, Governments need to use every tool at their disposal to understand and respond to the concerns of their citizens. We study issues raise d by the UK public to the Government during 2015-2017 (surrounding the UK EU-membership referendum), mining public opinion from a dataset of 10,950 petitions (representing 30.5 million signatures). We extract the main issues with a ground-up natural language processing (NLP) method, latent Dirichlet allocation (LDA). We then investigate their temporal dynamics and geographic features. We show that whilst the popularity of some issues is stable across the two years, others are highly influenced by external events, such as the referendum in June 2016. We also study the relationship between petitions issues and where their signatories are geographically located. We show that some issues receive support from across the whole country but others are far more local. We then identify six distinct clusters of constituencies based on the issues which constituents sign. Finally, we validate our approach by comparing the petitions issues with the top issues reported in Ipsos MORI survey data. These results show the huge power of computationally analyzing petitions to understand not only what issues citizens are concerned about but also when and from where.
221 - Mark Graham , Scott A. Hale , 2013
The movements of ideas and content between locations and languages are unquestionably crucial concerns to researchers of the information age, and Twitter has emerged as a central, global platform on which hundreds of millions of people share knowledg e and information. A variety of research has attempted to harvest locational and linguistic metadata from tweets in order to understand important questions related to the 300 million tweets that flow through the platform each day. However, much of this work is carried out with only limited understandings of how best to work with the spatial and linguistic contexts in which the information was produced. Furthermore, standard, well-accepted practices have yet to emerge. As such, this paper studies the reliability of key methods used to determine language and location of content in Twitter. It compares three automated language identification packages to Twitters user interface language setting and to a human coding of languages in order to identify common sources of disagreement. The paper also demonstrates that in many cases user-entered profile locations differ from the physical locations users are actually tweeting from. As such, these open-ended, user-generated, profile locations cannot be used as useful proxies for the physical locations from which information is published to Twitter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا