ترغب بنشر مسار تعليمي؟ اضغط هنا

Paragraph-level Commonsense Transformers with Recurrent Memory

179   0   0.0 ( 0 )
 نشر من قبل Saadia Gabriel
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human understanding of narrative texts requires making commonsense inferences beyond what is stated explicitly in the text. A recent model, COMET, can generate such implicit commonsense inferences along several dimensions such as pre- and post-conditions, motivations, and mental states of the participants. However, COMET was trained on commonsense inferences of short phrases, and is therefore discourse-agnostic. When presented with each sentence of a multi-sentence narrative, it might generate inferences that are inconsistent with the rest of the narrative. We present the task of discourse-aware commonsense inference. Given a sentence within a narrative, the goal is to generate commonsense inferences along predefined dimensions, while maintaining coherence with the rest of the narrative. Such large-scale paragraph-level annotation is hard to get and costly, so we use available sentence-level annotations to efficiently and automatically construct a distantly supervised corpus. Using this corpus, we train PARA-COMET, a discourse-aware model that incorporates paragraph-level information to generate coherent commonsense inferences from narratives. PARA-COMET captures both semantic knowledge pertaining to prior world knowledge, and episodic knowledge involving how current events relate to prior and future events in a narrative. Our results show that PARA-COMET outperforms the sentence-level baselines, particularly in generating inferences that are both coherent and novel.

قيم البحث

اقرأ أيضاً

Following the success of dot-product attention in Transformers, numerous approximations have been recently proposed to address its quadratic complexity with respect to the input length. While these variants are memory and compute efficient, it is not possible to directly use them with popular pre-trained language models trained using vanilla attention, without an expensive corrective pre-training stage. In this work, we propose a simple yet highly accurate approximation for vanilla attention. We process the queries in chunks, and for each query, compute the top-$k$ scores with respect to the keys. Our approach offers several advantages: (a) its memory usage is linear in the input size, similar to linear attention variants, such as Performer and RFA (b) it is a drop-in replacement for vanilla attention that does not require any corrective pre-training, and (c) it can also lead to significant memory savings in the feed-forward layers after casting them into the familiar query-key-value framework. We evaluate the quality of top-$k$ approximation for multi-head attention layers on the Long Range Arena Benchmark, and for feed-forward layers of T5 and UnifiedQA on multiple QA datasets. We show our approach leads to accuracy that is nearly-identical to vanilla attention in multiple setups including training from scratch, fine-tuning, and zero-shot inference.
We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplificati on does not scale to the rapidly growing body of biomedical literature, motivating the need for automated approaches. Unfortunately, there are no large-scale resources available for this task. In this work we introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics. We then propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts. We show that this automated measure better differentiates between technical and lay summaries than existing heuristics. We introduce and evaluate baseline encoder-decoder Transformer models for simplification and propose a novel augmentation to these in which we explicitly penalize the decoder for producing jargon terms; we find that this yields improvements over baselines in terms of readability.
Word2vec (Mikolov et al., 2013) has proven to be successful in natural language processing by capturing the semantic relationships between different words. Built on top of single-word embeddings, paragraph vectors (Le and Mikolov, 2014) find fixed-le ngth representations for pieces of text with arbitrary lengths, such as documents, paragraphs, and sentences. In this work, we propose a novel interpretation for neural-network-based paragraph vectors by developing an unsupervised generative model whose maximum likelihood solution corresponds to traditional paragraph vectors. This probabilistic formulation allows us to go beyond point estimates of parameters and to perform Bayesian posterior inference. We find that the entropy of paragraph vectors decreases with the length of documents, and that information about posterior uncertainty improves performance in supervised learning tasks such as sentiment analysis and paraphrase detection.
We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge wi th canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.
163 - Xinya Du , Claire Cardie 2018
We study the task of generating from Wikipedia articles question-answer pairs that cover content beyond a single sentence. We propose a neural network approach that incorporates coreference knowledge via a novel gating mechanism. Compared to models t hat only take into account sentence-level information (Heilman and Smith, 2010; Du et al., 2017; Zhou et al., 2017), we find that the linguistic knowledge introduced by the coreference representation aids question generation significantly, producing models that outperform the current state-of-the-art. We apply our system (composed of an answer span extraction system and the passage-level QG system) to the 10,000 top-ranking Wikipedia articles and create a corpus of over one million question-answer pairs. We also provide a qualitative analysis for this large-scale generated corpus from Wikipedia.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا