ﻻ يوجد ملخص باللغة العربية
Human understanding of narrative texts requires making commonsense inferences beyond what is stated explicitly in the text. A recent model, COMET, can generate such implicit commonsense inferences along several dimensions such as pre- and post-conditions, motivations, and mental states of the participants. However, COMET was trained on commonsense inferences of short phrases, and is therefore discourse-agnostic. When presented with each sentence of a multi-sentence narrative, it might generate inferences that are inconsistent with the rest of the narrative. We present the task of discourse-aware commonsense inference. Given a sentence within a narrative, the goal is to generate commonsense inferences along predefined dimensions, while maintaining coherence with the rest of the narrative. Such large-scale paragraph-level annotation is hard to get and costly, so we use available sentence-level annotations to efficiently and automatically construct a distantly supervised corpus. Using this corpus, we train PARA-COMET, a discourse-aware model that incorporates paragraph-level information to generate coherent commonsense inferences from narratives. PARA-COMET captures both semantic knowledge pertaining to prior world knowledge, and episodic knowledge involving how current events relate to prior and future events in a narrative. Our results show that PARA-COMET outperforms the sentence-level baselines, particularly in generating inferences that are both coherent and novel.
Following the success of dot-product attention in Transformers, numerous approximations have been recently proposed to address its quadratic complexity with respect to the input length. While these variants are memory and compute efficient, it is not
We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplificati
Word2vec (Mikolov et al., 2013) has proven to be successful in natural language processing by capturing the semantic relationships between different words. Built on top of single-word embeddings, paragraph vectors (Le and Mikolov, 2014) find fixed-le
We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge wi
We study the task of generating from Wikipedia articles question-answer pairs that cover content beyond a single sentence. We propose a neural network approach that incorporates coreference knowledge via a novel gating mechanism. Compared to models t