ترغب بنشر مسار تعليمي؟ اضغط هنا

Architecture-aware Coding for Distributed Storage: Repairable Block Failure Resilient Codes

121   0   0.0 ( 0 )
 نشر من قبل Gokhan Calis
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In large scale distributed storage systems (DSS) deployed in cloud computing, correlated failures resulting in simultaneous failure (or, unavailability) of blocks of nodes are common. In such scenarios, the stored data or a content of a failed node can only be reconstructed from the available live nodes belonging to the available blocks. To analyze the resilience of the system against such block failures, this work introduces the framework of Block Failure Resilient (BFR) codes, wherein the data (e.g., a file in DSS) can be decoded by reading out from a same number of codeword symbols (nodes) from a subset of available blocks of the underlying codeword. Further, repairable BFR codes are introduced, wherein any codeword symbol in a failed block can be repaired by contacting a subset of remaining blocks in the system. File size bounds for repairable BFR codes are derived, and the trade-off between per node storage and repair bandwidth is analyzed, and the corresponding minimum storage regenerating (BFR-MSR) and minimum bandwidth regenerating (BFR-MBR) points are derived. Explicit codes achieving the two operating points for a special case of parameters are constructed, wherein the underlying regenerating codewords are distributed to BFR codeword symbols according to combinatorial designs. Finally, BFR locally repairable codes (BFR-LRC) are introduced, an upper bound on the resilience is derived and optimal code construction are provided by a concatenation of Gabidulin and MDS codes. Repair efficiency of BFR-LRC is further studied via the use of BFR-MSR/MBR codes as local codes. Code constructions achieving optimal resilience for BFR-MSR/MBR-LRCs are provided for certain parameter regimes. Overall, this work introduces the framework of block failures along with optimal code constructions, and the study of architecture-aware coding for distributed storage systems.



قيم البحث

اقرأ أيضاً

This paper aims to go beyond resilience into the study of security and local-repairability for distributed storage systems (DSS). Security and local-repairability are both important as features of an efficient storage system, and this paper aims to u nderstand the trade-offs between resilience, security, and local-repairability in these systems. In particular, this paper first investigates security in the presence of colluding eavesdroppers, where eavesdroppers are assumed to work together in decoding stored information. Second, the paper focuses on coding schemes that enable optimal local repairs. It further brings these two concepts together, to develop locally repairable coding schemes for DSS that are secure against eavesdroppers. The main results of this paper include: a. An improved bound on the secrecy capacity for minimum storage regenerating codes, b. secure coding schemes that achieve the bound for some special cases, c. a new bound on minimum distance for locally repairable codes, d. code construction for locally repairable codes that attain the minimum distance bound, and e. repair-bandwidth-efficient locally repairable codes with and without security constraints.
This chapter deals with the topic of designing reliable and efficient codes for the storage and retrieval of large quantities of data over storage devices that are prone to failure. For long, the traditional objective has been one of ensuring reliabi lity against data loss while minimizing storage overhead. More recently, a third concern has surfaced, namely of the need to efficiently recover from the failure of a single storage unit, corresponding to recovery from the erasure of a single code symbol. We explain here, how coding theory has evolved to tackle this fresh challenge.
In a distributed storage system, code symbols are dispersed across space in nodes or storage units as opposed to time. In settings such as that of a large data center, an important consideration is the efficient repair of a failed node. Efficient rep air calls for erasure codes that in the face of node failure, are efficient in terms of minimizing the amount of repair data transferred over the network, the amount of data accessed at a helper node as well as the number of helper nodes contacted. Coding theory has evolved to handle these challenges by introducing two new classes of erasure codes, namely regenerating codes and locally recoverable codes as well as by coming up with novel ways to repair the ubiquitous Reed-Solomon code. This survey provides an overview of the efforts in this direction that have taken place over the past decade.
We introduce a new family of Fountain codes that are systematic and also have sparse parities. Given an input of $k$ symbols, our codes produce an unbounded number of output symbols, generating each parity independently by linearly combining a logari thmic number of randomly selected input symbols. The construction guarantees that for any $epsilon>0$ accessing a random subset of $(1+epsilon)k$ encoded symbols, asymptotically suffices to recover the $k$ input symbols with high probability. Our codes have the additional benefit of logarithmic locality: a single lost symbol can be repaired by accessing a subset of $O(log k)$ of the remaining encoded symbols. This is a desired property for distributed storage systems where symbols are spread over a network of storage nodes. Beyond recovery upon loss, local reconstruction provides an efficient alternative for reading symbols that cannot be accessed directly. In our code, a logarithmic number of disjoint local groups is associated with each systematic symbol, allowing multiple parallel reads. Our main mathematical contribution involves analyzing the rank of sparse random matrices with specific structure over finite fields. We rely on establishing that a new family of sparse random bipartite graphs have perfect matchings with high probability.
In this work it is shown that locally repairable codes (LRCs) can be list-decoded efficiently beyond the Johnson radius for a large range of parameters by utilizing the local error-correction capabilities. The corresponding decoding radius is derived and the asymptotic behavior is analyzed. A general list-decoding algorithm for LRCs that achieves this radius is proposed along with an explicit realization for LRCs that are subcodes of Reed--Solomon codes (such as, e.g., Tamo--Barg LRCs). Further, a probabilistic algorithm of low complexity for unique decoding of LRCs is given and its success probability is analyzed. The second part of this work considers error decoding of LRCs and partial maximum distance separable (PMDS) codes through interleaved decoding. For a specific class of LRCs the success probability of interleaved decoding is investigated. For PMDS codes, it is shown that there is a wide range of parameters for which interleaved decoding can increase their decoding radius beyond the minimum distance such that the probability of successful decoding approaches $1$ when the code length goes to infinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا