ﻻ يوجد ملخص باللغة العربية
We prove new boundary Harnack inequalities in Lipschitz domains for equations with a right hand side. Our main result applies to non-divergence form operators with bounded measurable coefficients and to divergence form operators with continuous coefficients, whereas the right hand side is in $L^q$ with $q > n$. Our approach is based on the scaling and comparison arguments of cite{DS20}, and we show that all our assumptions are sharp. As a consequence of our results, we deduce the $mathcal{C}^{1,alpha}$ regularity of the free boundary in the fully nonlinear obstacle problem and the fully nonlinear thin obstacle problem.
We introduce a new boundary Harnack principle in Lipschitz domains for equations with right hand side. Our approach, which uses comparisons and blow-ups, will adapt to more general domains as well as other types of operators. We prove the principle f
We give some a priori estimates of type sup*inf for Yamabe and prescribed scalar curvature type equations on Riemannian manifolds of dimension >2. The product sup*inf is caracteristic of those equations, like the usual Harnack inequalities for non ne
We prove matrix and scalar differential Harnack inequalities for linear parabolic equations on Riemannian and Kahler manifolds.
We investigate the parabolic Boundary Harnack Principle for both divergence and non-divergence type operators by the analytical methods we developed in the elliptic context. Besides the classical case, we deal with less regular space-time domains, including slit domains.
We use the theory of functions of noncommuting operators (noncommutative analysis) to solve an asymptotic problem for a partial differential equation and show how, starting from general constructions and operator formulas that seem to be rather abstr