ﻻ يوجد ملخص باللغة العربية
We give some a priori estimates of type sup*inf for Yamabe and prescribed scalar curvature type equations on Riemannian manifolds of dimension >2. The product sup*inf is caracteristic of those equations, like the usual Harnack inequalities for non negative harmonic functions. First, we have a lower bound for sup*inf for some classes of PDE on compact manifolds (like prescribed scalar cuvature). We also have an upper bound for the same product but on any Riemannian manifold not necessarily compact. An application of those result is an uniqueness solution for some PDE.
We prove matrix and scalar differential Harnack inequalities for linear parabolic equations on Riemannian and Kahler manifolds.
We derive a matrix version of Li & Yau--type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R.~Hamilton did in~cite{hamilton7} f
Following the recent work of Jiang and Lin (Linear Algebra Appl. 585 (2020) 45--49), we present more results (bounds) on Harnack type inequalities for matrices in terms of majorization (i.e., in partial products) of eigenvalues and singular values. W
We prove sharp Harnack inequalities for a family of Kolmogorov-Fokker-Planck type hypoelliptic diffusions.
We classify regularity for a class of Lagrangian mean curvature type equations, which includes the potential equation for prescribed Lagrangian mean curvature and those for Lagrangian mean curvature flow self-shrinkers and expanders, translating soli