ترغب بنشر مسار تعليمي؟ اضغط هنا

Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature

91   0   0.0 ( 0 )
 نشر من قبل Edward Wollack
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the performance of microwave-frequency phononic crystal resonators fabricated on thin-film lithium niobate for integration with superconducting quantum circuits. For different design geometries at millikelvin temperatures, we achieve mechanical internal quality factors $Q_i$ above $10^5 - 10^6$ at high microwave drive power, corresponding to $5times10^6$ phonons inside the resonator. By sweeping the defect size of resonators with identical mirror cell designs, we are able to indirectly observe signatures of the complete phononic bandgap via the resonators internal quality factors. Examination of quality factors temperature dependence shows how superconducting and two-level system (TLS) loss channels impact device performance. Finally, we observe an anomalous low-temperature frequency shift consistent with resonant TLS decay and find that material choice can help to mitigate these losses.

قيم البحث

اقرأ أيضاً

We report the design and fabrication of diamond spin-mechanical resonators embedded in a two-dimensional (2D) phononic crystal square lattice. The rectangular resonator features GHz in-plane compression modes protected by the phononic band gap of the square lattice. A membrane-in-bulk approach is developed for the fabrication of the suspended 2D structure. This approach overcomes the limitations of the existing approaches, which are either incompatible with the necessary high-temperature thermal annealing or unsuitable for 2D structures with the required feature size. Graded soft oxygen etching, with the etching rate decreased gradually to below 1 nm/minute, is used to remove defective surface layers damaged by reactive ion etching. Combining the graded etching with other established surface treatment techniques reduces the optical linewidth of nitrogen vacancy centers in resonators with a thickness below 1 micron to as narrow as 330 MHz.
Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metr ics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here we make an important step towards miniaturizing functional components on this platform, reporting probably the smallest high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz/V, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 $mu {rm m}^3$. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb/s with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.
We report intracavity Bragg scattering induced by photorefractive (PR) effect in high-Q lithium niobate (LN) ring resonators at cryogenic temperatures. We show that, when a cavity mode is strongly excited, the PR effect imprints a long-lived periodic space-charge field. This residual field in turn creates a refractive index modulation pattern that dramatically enhances the back scattering of an incoming probe light, and results in selective and reconfigurable mode splittings. This PR-induced Bragg scattering effect, despite being undesired for many applications, could be utilized to enable optically programmable photonic components.
Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolit hic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.27 dB/cm optical propagation loss on wafer-scale. Our results show that LN PICs are fundamentally scalable and can be highly cost-effective.
We numerically and experimentally investigate the phononic loss for superconducting resonators fabricated on a piezoelectric substrate. With the help of finite element method simulations, we calculate the energy loss due to electromechanical conversi on into bulk and surface acoustic waves. This sets an upper limit for the resonator internal quality factor $Q_i$. To validate the simulation, we fabricate quarter wavelength coplanar waveguide resonators on GaAs and measure $Q_i$ as function of frequency, power and temperature. We observe a linear increase of $Q_i$ with frequency, as predicted by the simulations for a constant electromechanical coupling. Additionally, $Q_i$ shows a weak power dependence and a negligible temperature dependence around 10$,$mK, excluding two level systems and non-equilibrium quasiparticles as the main source of losses at that temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا